
Mastering

Azure Managed

Identities:
Attack & Defense, Part 2

Research Paper

3 Introduction 41 Incident Investigation & Response

4 Identifying Azure Managed
Identities

54 Summary

11 Threat Hunting Managed Identity
Abuse

55 About Hunters

Introduction

In part one of this series, we explored the foundational aspects of Azure Managed
Identities (MIs), focusing on their benefits, abuse scenarios, and the expanding attack
surface they present. Specifically, we examined how MIs configured on Azure Virtual
Machines (VMs) can be exploited to access Azure resources, escalate privileges, and
target endpoints within Azure Entra ID and Microsoft 365. While MIs are designed to
streamline credential management and enhance security, these scenarios highlight their
potential misuse when not adequately monitored or secured.

This second part shifts focus to proactive defense. Building on the abuse scenarios and
the potential blast radius of a compromised MI, we’ll delve into threat-hunting
methodologies and detection strategies that security teams can use to uncover signs of
MI abuse.

Recent research by NetSPI — particularly the work of Karl Fossaen and his DEF CON 32
talk “Identity Theft is Not a Joke, Azure!”, was instrumental in raising awareness around
MI abuse. Their contributions, alongside other researchers in the community, helped
frame the importance of not only understanding these attack paths but also building
reliable detection and investigation techniques around them. This blog builds on that
momentum - focusing less on the offensive techniques and more on the defensive
strategies available to security teams today.

By analyzing attack patterns, auditing MI configurations, and leveraging native Azure
monitoring tools, organizations can identify vulnerabilities and mitigate risks before they
escalate. This guide is not just informative — it’s actionable. It provides practical insights
to help defenders stay ahead of evolving threats and secure their environments against
the misuse of MIs.

​
3

https://www.hunters.security/en/blog/abusing-azure-managed-identities-nhi-attack-paths?utm_campaign=11814743-%5BThreat%20research%5D%20Masturing%20Azure%20MI%20-%20P1&utm_source=Part%202
https://youtu.be/efF5Up7zBrg?feature=shared

Identifying Azure Managed Identities

To effectively hunt for threats involving abuse of Managed Identities (MIs), accurately
identifying these identities within your Azure environment is crucial. Given a specific user,
how can we confirm it is a MI and not another Azure user type?

Generally, there are three primary methods for identifying MIs:

1.​ Reviewing the Azure Portal
2.​ Querying Azure Resources
3.​ Examining Azure Logs

Review Azure Portal

In the Azure Management Portal (Azure Portal), we can find System-Assigned Managed
Identities (SAMIs) by inspecting the resources that support them, such as virtual
machines, app services, and other Azure services. However, there isn't a dedicated
section that directly lists all SAMIs across the subscription.

It's simpler for user-assigned managed identities (UAMIs), as all UAMIs are listed on the
“Managed Identities” page.

​
Figure 1 - Managed Identities page on Azure portal

​
4

Shell

Shell

Query Azure Resources

While the Azure Portal doesn’t provide a sufficient way to review SAMIs, querying Azure
using tools like Azure CLI offers more flexibility.

After installing Azure CLI and authenticating with a user with list permissions, we can use
the following PowerShell Script to list all MIs, categorized into MI types (SAMI/UAMI).

$sps = az ad sp list --filter "servicePrincipalType eq 'ManagedIdentity'" --output json |

ConvertFrom-Json

$sps | Select-Object -Property displayName, Id, servicePrincipalType, appId, `

 @{Name="ManagedIdentityType"; Expression={

 $identityType = ($_.alternativeNames | Where-Object { $_ -match "isExplicit=(\w+)" }

| ForEach-Object {

 if ($matches[1] -eq "True") {

 "UAMI"

 } elseif ($matches[1] -eq "False") {

 "SAMI"

 } else {

 "Unknown"

 }

 })

 if ($identityType) {

 $identityType

 } else {

 "Unknown"

 }

 }} | Format-Table -AutoSize

We can also use the following one-liner to present only a specific MI type, e.g.,
SAMI:

az resource list --query "[?identity.type=='SystemAssigned'].{Name:name,
principalId:identity.principalId}" --output table

​
5

Examine Azure Logs

In addition to Azure Portal and CLI-based querying, the different Azure logs might also
shed light on the existence of MIs. Using logs to identify or map MIs can be valuable in
the following use cases:

-​ Lack of permissions to access Azure Portal or query Azure CLI.​
For example, the organization’s SOC analysts and third-party providers such as
MSSPs or IR retainers typically lack enough permissions, so they mainly rely on the
logs.

-​ Deleted MIs​
In cases where the MI in scope was deleted, we won’t find it on Azure Portal or
using CLI, leaving us with the logs as a last resort.

​
MI authentication events under Azure Sign-Ins logs

The Azure Sign-Ins logs have a dedicated category for MI-related sign-ins. On the Azure
Portal, it’s presented as “Managed identity sign-ins”:

Figure 2 - Managed identities sign-in tab under Azure Sign-in logs

Azure Sign-In logs help identify MIs but do not differentiate between System-Assigned
and User-Assigned MIs. Azure Audit and Azure Activity logs are more suitable for creating
a comprehensive mapping of all MIs.Yet, it’s important to remember that sometimes not all
log types are available and have sufficient retention, so Azure Sign-In logs could partially
complete the picture.

​
6

SQL

MI creation events under Azure Audit logs

Creating a new SAMI and UAMI would trigger “Add service principal” under Azure Audit
logs.

How can we differentiate between the creation logs of SAMI and UAMI?

For UAMI, the modified property ManagedIdentityResourceId indicates the identity is
user-assigned (UAMI_02 is the name we gave for the newly created UAMI):

/subscriptions/<subscription-id>/resourcegroups/<resource-group>/providers/Microso
ft.ManagedIdentity/userAssignedIdentities/UAMI_02

While for SAMI, the modified property ManagedIdentityResourceId indicates the identity
is attached to a VM resource:

/subscriptions/<subscription-id>/resourcegroups/<resource-group>/providers/Micro
soft.Compute/virtualMachines/sample_vm_name

We use the following Snowflake (SF) query to identify a SAMI/UAMI creation using Azure
Audit, and write the results into a new SF table: managed_identities_inventory.

That table would be later used for hunting queries.

Note: Throughout the research, we used SF as our database. Of course, the queries can
be implemented over any database, with the required syntax adjustments.

SELECT

 MIN(event_time) AS first_seen,

 MAX(event_time) AS last_seen,

 inner_f.value:newValue::string AS managed_identity_resource, -- Parse newValue to ARRAY

 outer_f.value:displayName::string AS managed_identity_name,

 outer_f.value:id::string AS managed_identity_id,

 -- Determine Managed Identity Type

 CASE WHEN managed_identity_resource ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 'Azure Audit: Creations of new managed identities' AS source_description

FROM

​
7

SQL

 RAW.AZURE_AUDIT,

 LATERAL FLATTEN(input => PARSE_JSON(properties_target_resources)) AS outer_f, -- Flatten the outer JSON array

 LATERAL FLATTEN(input => outer_f.value:modifiedProperties) AS inner_f -- Flatten the inner modifiedProperties array

WHERE operation_name = 'Add service principal'

 AND inner_f.value:displayName::string = 'ManagedIdentityResourceId'

 AND properties:identity::string = 'Managed Service Identity'

 AND event_time > CURRENT_TIMESTAMP - INTERVAL '180 days'

GROUP BY managed_identity_resource,

 managed_identity_name,

 managed_identity_id,

 managed_identity_type

Tips:

●​ We use lateral flatten to overcome the nested pattern of fields in the log.
●​ Consider changing the time-based restriction for environments with high log

volume to maintain query performance and manage table size.

MI creation events under Azure Activity logs

On Azure Activity, if the field xms_mirid (Managed Identity Resource Identifier) is not
null, it indicates the use of a MI. We use the following SF query for that:

SELECT MIN(event_time) AS first_seen,

 MAX(event_time) AS last_seen,

 identity:claims:xms_mirid::string AS managed_identity_resource,

 SPLIT_PART(managed_identity_resource, '/', -1) AS managed_identity_name,

 identity:claims:"http://schemas.microsoft.com/identity/claims/objectidentifier"::string AS managed_identity_id,

 -- Determine Managed Identity Type

 CASE WHEN managed_identity_resource ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 'Azure Activity: Operations that were initiated by managed identities' AS source_description

FROM RAW.AZURE_ACTIVITY

WHERE managed_identity_resource IS NOT NULL

 AND event_time > CURRENT_TIMESTAMP - INTERVAL '180 days'

GROUP BY managed_identity_resource,

 managed_identity_name,

 managed_identity_id,

 managed_identity_type

​
8

SQL

​
We understand that both log types, Azure Audit and Azure Activity, can indicate the
existence and usage of MIs and assist us in categorizing each into SAMI or UAMI. Yet,
every log type has its disadvantage that prevents it from comprehensively mapping MIs.

Azure Audit can assist in mapping of MIs by their creation event. However, it’s
susceptible to visibility gaps due to insufficient log retention.

Azure Activity, on the other hand, can assist in mapping MIs by their ongoing activities.
However, it won’t cover cases of inactive MIs.

As a result, creating a unified table based on the two queries we’ve created above is
recommended to achieve a comprehensive mapping of MIs using logs.

CREATE TABLE investigation.managed_identities_inventory AS

SELECT

 MIN(event_time) AS first_seen,

 MAX(event_time) AS last_seen,

 -- Parse newValue to ARRAY

 inner_f.value:newValue::string AS managed_identity_resource,

 outer_f.value:displayName::string AS managed_identity_name,

 outer_f.value:id::string AS managed_identity_id,

 -- Determine Managed Identity Type

 CASE WHEN managed_identity_resource ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 'Azure Audit: Creations of new managed identities' AS source_description

FROM

 RAW.AZURE_AUDIT,

 -- Flatten the outer JSON array

 LATERAL FLATTEN(input => PARSE_JSON(properties_target_resources)) AS outer_f,

 -- Flatten the inner modifiedProperties array

 LATERAL FLATTEN(input => outer_f.value:modifiedProperties) AS inner_f

WHERE OPERATION_NAME = 'Add service principal'

 AND inner_f.value:displayName::string = 'ManagedIdentityResourceId'

 AND properties:identity::string = 'Managed Service Identity'

 AND event_time > CURRENT_TIMESTAMP - INTERVAL '180 days'

GROUP BY managed_identity_resource,

​
9

 managed_identity_name,

 managed_identity_id,

 managed_identity_type

UNION ALL

SELECT MIN(event_time) AS first_seen,

 MAX(event_time) AS last_seen,

 identity:claims:xms_mirid::string AS managed_identity_resource,

 SPLIT_PART(managed_identity_resource, '/', -1) AS managed_identity_name,

identity:claims:"http://schemas.microsoft.com/identity/claims/objectidentifier"::string

AS managed_identity_id,

 -- Determine Managed Identity Type

 CASE WHEN managed_identity_resource ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 'Azure Activity: Operations that were initiated by managed identities'

 AS source_description

FROM RAW.AZURE_ACTIVITY

WHERE managed_identity_resource IS NOT NULL

 AND event_time > CURRENT_TIMESTAMP - INTERVAL '180 days'

GROUP BY managed_identity_resource,

 managed_identity_name,

 managed_identity_id,

 managed_identity_type

Notes:

●​ The new table is written under a different schema (investigation), but of course, it
can be defined differently depending on the organizational policies.

​
10

Threat Hunting Managed Identity Abuse

This section focuses on threat hunting techniques designed to surface potential misuse,
lateral movement, and privilege escalation involving MIs. Through hunting queries and
analytical patterns, we demonstrate how to leverage various Azure log sources, including
Azure Activity Logs, Microsoft Graph API logs, and Entra ID sign-ins, to uncover abnormal
behaviors, unauthorized access attempts, and token misuse. These queries aim to detect
threats in real time, support historical investigations, and identify deviations from normal
behavior across your Azure environment.

While researching different types of MI abuse across services such as Azure Function
Apps, VMs, Automation Accounts, and more, we concluded that a service-specific
approach is often too narrow. It often introduces irrelevant noise or lacks the necessary
telemetry for reliable detection. Instead, the most effective hunting strategies focus on
service-agnostic behaviors such as stolen JWT token usage and anomalous activity
patterns.

That said, service-specific logs remain highly valuable for investigation and response.
While they may not always be actionable for real-time detection, they often provide
critical context for validating alerts and understanding the scope of impact. We explore
this further in the next section, Incident Investigation & Response.

We also found that no single detection logic is sufficient on its own. As a result, we
developed a collection of hunting queries -written in Snowflake SQL, that address
different abuse scenarios. These logics are designed to be modular, complementary, and
adaptable to various threat models. They can also be translated into other query
languages, such as KQL, while preserving their core detection logic.

​
11

Hunting Queries: At a glance
Click to jump to the relevant query ​

Hunting Query Query Fidelity Level

1 Explicit request for IMDS from a VM with SAMI High

2 Microsoft Graph Enumeration using Managed Identity High

3 Sensitive Graph Roles-usage by a Managed Identity High

4 MI’s token request for unusual endpoints High

5 Unique Token Identifier Usage From Multiple IP
Addresses

High

6 MI’s mass token types requested Medium

7 Managed Identity Activities from Non-Azure IP
Addresses

Medium

8 Unusual Action Types by a Managed Identity Medium

9 Attached UAMI used from a New Azure Resource Medium

10 MI performs activity on Entra ID Medium

11 SAMI activity from abnormal IP Low

12 MI accesses unusual resources Low

​
12

Hunting Query 1 - Explicit request for IMDS from a VM with SAMI:

Thesis

MIs request tokens from IMDS frequently as part of the regular operations. Threat actors
who gain control over a VM with an attached SAMI may try to request a token explicitly
using PowerShell/CMD.

To detect such an activity, we look at MI sign-ins and correlate those events with
host-based process connection events, based on the name of the SAMI and the
hostname, while the destination IP is the IMDS (169.254.169.254), and process name is
related to CMD or Script-based tools (e.g., PowerShell.exe, Python.exe).

In this hunting thesis, we correlated with Windows security event 5156. However, other
host-based process connection events, such as Sysmon event ID 3 and EDR network
events, should also work.

Data source(s)

●​ “Managed identity sign-ins” category under Azure Sign-Ins logs.
●​ Windows security event 5156 (“The Windows Filtering Platform has permitted a

connection”).

Fidelity level

●​ High​

Tuning & Observations

●​ False Positive use cases:
○​ Although not common, explicit requests of SAMI’s tokens can be legitimate.

Each organization should examine those use cases, try to exclude them,
and reduce FP rates.​

●​ False Negative use cases:
○​ Focusing on specific processes: The query focuses on particular processes

that initiated the connection to the IMDS. Those processes (PowerShell.exe,
cmd.exe, etc.) might indicate explicit token requests. Yet, threat actors may

​
13

SQL

request tokens using different processes that don’t match the processes
outlined within the query. As a result, an organization should consider
removing the processes list and go the other way around - filter out
common and legitimate processes that connect to the IMDS, e.g.,
WindowsAzureGuestAgent.exe, to name a few. That may decrease the FN
rate (i.e., increase the coverage) at the cost of increasing the FP rate.

○​ Visibility gaps: Another FN scenario might be caused by visibility gaps.
Event 5156 is known as a verbose log, so many organizations decide to
avoid collecting it or collect it only on certain highly sensitive assets. Hence,
it’s essential to check whether this event is collected widely or consider
other alternatives, such as Sysmon event ID 3, EDR network events, etc.

○​ Focusing on Windows: Choosing event 5156 as the host-based process
connection event limits us to Windows VMs. Using EDR network events may
help extend the coverage of this query.

Query

SELECT azure_signin.event_time,

 azure_signin.category,

 azure_signin.properties:servicePrincipalId::string AS managed_identity_id,

 azure_signin.properties:servicePrincipalName::string AS managed_identity_name,

 azure_signin.caller_ip_address,

 azure_signin.properties_user_principal_name,

 azure_signin.properties_is_interactive,

 azure_signin.properties_resource_display_name::string AS target_endpoint_name,

 azure_signin.properties_resource_id::string AS target_endpoint_id,

 wel.event_time,

 wel.event_id,

 wel.machine_name,

 SPLIT_PART(wel.machine_name, '.', 1) AS computer_name,

 wel.message_details:application_information:application_name::string AS process_name,

 wel.message_details:application_information:process_id::string AS process_id,

 wel.message_details:network_information:source_address::string AS source_address,

 wel.message_details:network_information:source_port::string AS source_port,

 wel.message_details:network_information:destination_address::string AS destination_address,

 wel.message_details:network_information:destination_port::string AS destination_port,

 wel.message_details:network_information:direction::string AS direction,

 wel.message_details:network_information:protocol::string AS protocol

FROM RAW.AZURE_SIGNIN AS azure_signin

LEFT JOIN RAW.UNIVERSAL_WEL AS wel

​
14

ON azure_signin.properties:servicePrincipalName::string = SPLIT_PART(wel.machine_name, '.', 1)

WHERE azure_signin.category = 'ManagedIdentitySignInLogs'

 AND azure_signin.event_time > CURRENT_DATE

 AND wel.event_time > CURRENT_DATE - INTERVAL '15 minutes'

 AND wel.event_time BETWEEN azure_signin.event_time - INTERVAL '15 minutes' AND

azure_signin.event_time + INTERVAL '15 minutes'

 AND wel.event_id = 5156

 AND wel.message_details:network_information:direction::string = 'Outbound'

 AND wel.message_details:network_information:destination_address::string = '169.254.169.254'

 AND wel.message_details:application_information:application_name::string ILIKE ANY (

'%\\\\powershell.exe',

'%\\\\cmd.exe',

'%\\\\conhost.exe',

'%\\\\python.exe')

Notes:

●​ Results can be enriched and investigated using a variety of host-based events:
Process Creation events (id 4688), PowerShell Operational events (id 4104), EDR
logs, Sysmon logs, and more.

●​ This query monitors the current day. Each organization should consider the
timeframe for monitoring (current day, past week/month, etc.).

Hunting Query 2 - Microsoft Graph Enumeration using Managed
Identity:

Thesis

This threat-hunting thesis focused on Microsoft Graph, which differentiates it from most
of the other theses we mentioned here, focusing on the main Azure log sources (Sign-in,
Activity, Audit).

This hunting query looks for potential enumeration conducted using a compromised MI. It
is logical to assume that one of the first things a threat actor will conduct after getting
unauthorized access to a MI JWT access token is some kind of enumeration.

Different parts of this phase can be conducted using Microsoft Graph, directly using
HTTP requests (as demonstrated in part 1 of this series), or by using different tools that
use it behind the scenes. This thesis aims to detect both.

​
15

SQL

Data source(s)

●​ Microsoft Graph Activity Logs
●​ Managed Identities Inventory

Fidelity level
●​ High

Tuning & Observations

●​ Identifying potential enumeration activity in Microsoft Graph can be challenging
due to different types of “noise,” which most often requires a comparison to a
baseline detection method (UEBA). However, from our experience, the results are
significantly less noisy when limiting the search to MIs only, and no UEBA usage is
required.

●​ The thresholds mentioned in the query below are adjustable, and we recommend
modifying them based on the numbers associated with your Azure/M365
environment.

Query

●​ In this hunting query, we used a CTE that includes a group of activities that align
with potential enumeration characteristics, based on pre-defined thresholds.

●​ This CTE includes some lookups, including fetching the full request URI, the URI
Endpoint Base of each requested URI, and the number of distinct requests by each
MI.

●​ The thresholds (which can be adjusted in case of significantly different “normal”
numbers in your organization) are set to identify only cases with significant
requests, distinct URIs, and distinct URI endpoint bases accessed by a specific MI
over X minutes (we used 1 hour, however it can be modified, for example to 15
minutes, depending on the tested environment).

●​ We also added the option (which can be uncommented) to filter out URIs that are
more likely to be spammy. ​

WITH graph_enum_activity AS (

 SELECT MIN(time) AS min_event_time,

​
16

 MAX(time) AS max_event_time,

 DATE_TRUNC('HOUR', time) AS hour_of_events,

 user_principal_object_id,

 signin_activity_id AS token_identifier,

 token_issued_at AS token_issue_time,

 properties:ipAddress AS source_ip_address,

 ARRAY_AGG(DISTINCT user_agent) AS

distinct_user_agents,

 ARRAY_AGG(DISTINCT request_uri) AS

distinct_request_uris,

 ARRAY_AGG(

 DISTINCT '/' || REGEXP_SUBSTR(

 request_uri,

 '^https://graph.microsoft.com/((v1.0|beta)/[^/()?]+)',

 1, 1, 'e'

)

) AS

distinct_endpoint_base,

 ARRAY_AGG(DISTINCT roles) AS distinct_roles,

 ARRAY_AGG(DISTINCT app_id) AS distinct_app_ids,

 ARRAY_AGG(DISTINCT response_status_code) AS

distinct_response_codes,

 ARRAY_SIZE(distinct_endpoint_base) AS

amount_of_endpoint_base,

 ARRAY_SIZE(distinct_request_uris) AS

amount_of_request_uris,

 COUNT(*) AS amount_of_requests

 FROM RAW.MICROSOFT_GRAPH_ACTIVITY_LOGS

 WHERE time BETWEEN '2025-03-01 19:00:00' AND '2025-04-01 22:30:00'

 AND request_method = 'GET'

 -- In case of any particular spammy requested URIs in your environment, feel free to add them to the list

 AND NOT request_uri ILIKE ANY (

 '%users/delta?$deltatoken%',

 '%/info/logoUrl%'

)

 AND NOT MICROSOFT_GRAPH_ACTIVITY_LOGS.user_agent ILIKE '%Microsoft Office/%'

 GROUP BY user_principal_object_id,

 token_identifier,

 token_issue_time,

 source_ip_address,

 hour_of_events

 HAVING amount_of_requests > 60

 AND amount_of_endpoint_base > 5

 AND amount_of_request_uris > 30

)

SELECT g.hour_of_events,

 g.user_principal_object_id,

 g.token_identifier,

 g.token_issue_time,

 g.source_ip_address,

​
17

 g.distinct_user_agents,

 g.distinct_request_uris,

 g.distinct_endpoint_base,

 g.distinct_roles,

 g.distinct_app_ids,

 g.distinct_response_codes,

 g.amount_of_endpoint_base,

 g.amount_of_request_uris,

 g.amount_of_requests

FROM graph_enum_activity AS g

LEFT JOIN INVESTIGATION.MANAGED_IDENTITIES_INVENTORY AS managed_identities_inventory

 ON g.user_principal_object_id = managed_identities_inventory.managed_identity_id

WHERE managed_identities_inventory.managed_identity_id IS NOT NULL

Hunting Query 3 - Sensitive Graph Roles-usage by a Managed
Identity

Thesis

In this thesis, we looked for sensitive graph roles used by MIs. Of course, this doesn’t
mean that the relevant hits indicate malicious activity, but it does, at the very least, require
the attention of an analyst or threat hunter.

Sensitive Graph Roles like RoleManagement.ReadWrite.Directory,
AppRoleAssignment.ReadWrite.All, Mail.Read,
Directory.ReadWrite.All, etc., are not usually used by MIs and are of high interest
to potential threat actors. When used, they may indicate malicious activity.

Data source(s)

●​ Microsoft Graph Activity Logs
●​ Azure Managed Identities Inventory​

Fidelity level

●​ High​

​
18

SQL

Tuning & Observations

●​ False Positive use cases:
○​ There might be cases in which other sensitive graph roles were targeted by

a threat actor. The list we used in the hunting query above includes roles
wer believe are important to track, however there are additional ones that
can be interesting and significant. Consider adding additional graph roles of
your choice. The following Microsoft documentation can be used for
reference: https://learn.microsoft.com/en-us/graph/permissions-reference

Query

This hunting query joins the Microsoft Graph Activity Logs table and the Azure Managed
Identity inventory table while looking for Token Roles that are considered sensitive or
more likely to be targeted by threat actors. Interestingly, from our experience, those roles
are not commonly used by MIs, making any hit that associates a MI with any sensitive
roles important enough to be investigated. ​

SELECT graph_activity_table.time,

 graph_activity_table.app_id AS app_id,

 graph_activity_table.user_principal_object_id AS upn_id,

 graph_activity_table.managed_identity_name,

 graph_activity_table.roles AS token_roles,

 graph_activity_table.request_uri,

 graph_activity_table.properties:wids AS token_wids,

 graph_activity_table.properties:ipAddress AS ip_address,

 graph_activity_table.token_issued_at AS token_issue_time,

 graph_activity_table.request_method AS request_method,

 graph_activity_table.signin_activity_id AS token_id,

 graph_activity_table.request_uri AS request_uri,

 graph_activity_table.user_agent AS user_agent,

 graph_activity_table.response_status_code AS status_code,

 graph_activity_table.response_size_bytes AS size_bytes,

 graph_activity_table.app_id AS app_id,

 graph_activity_table.user_principal_object_id AS upn_id

FROM RAW.MICROSOFT_GRAPH_ACTIVITY_LOGS AS graph_activity_table

JOIN INVESTIGATION.MANAGED_IDENTITIES_INVENTORY AS managed_identities_inventory

 ON graph_activity_table.upn_id = managed_identities_inventory.managed_identity_id

 AND graph_activity_table.time BETWEEN '2025-01-07 06:30:00' AND '2025-01-07 11:00:00'

 AND graph_activity_table.roles ILIKE ANY (

 '%RoleManagement.ReadWrite.Directory%',

 '%AppRoleAssignment.ReadWrite.All%',

 '%Mail.Read%',

 '%Directory.ReadWrite.All%'

)

​
19

https://learn.microsoft.com/en-us/graph/permissions-reference

Hunting Query 4 - MI’s token request for unusual endpoints:

Thesis

MI actions are typically pre-defined and repetitive. Hence, we’d expect the requested
endpoints to be relatively static. MIs that suddenly request a token for an endpoint it has
never asked for before, or at least not recently, could raise a suspicion that it’s misused.

Data source(s)

●​ “Managed identity sign-ins” category under Azure Sign-Ins logs.

Fidelity level

●​ High

Tuning & Observations

●​ False Positive use cases:
○​ The resources the MI is attached to may change their actions, resulting in

the endpoints they ask tokens for. Such cases may generate FP leads.
●​ False Negative use cases:

○​ This thesis compares a given token request to a historical baseline. If the
baseline already includes a token request for the relevant endpoint by the
relevant MI, then an anomaly would not be triggered.

Query

Logic: In the hunting query below, we used:

●​ We create a baseline for managed_identity_id - target_endpoint_id pairs
and put it under TOKEN_REQUEST_HISTORY. Then, we look for a new pair.

●​ The time periods in this query are arbitrary (e.g., a 120-day learning period). Every
organization can modify the times according to its needs and limitations.

●​ This query monitors the current day. Each organization should consider the
monitoring timeframe (current day, past week/month/etc).

●​ There are several ways to implement this thesis on Snowflake, including using
JOIN and PARTITION functionalities. Some of those ways could be more efficient
performance-wise. Yet, clarity and simplicity of the query were the primary
considerations while deciding on the query version to share.

​
20

SQL

WITH token_request_history AS (

 SELECT MIN(event_time) AS first_seen,

 properties:servicePrincipalId::string AS managed_identity_id,

 properties_resource_id::string AS target_endpoint_id

 FROM RAW.AZURE_SIGNIN

 WHERE category = 'ManagedIdentitySignInLogs'

 -- define a learning period of 4 months

 AND event_time > CURRENT_DATE - INTERVAL '120 days'

 GROUP BY managed_identity_id, target_endpoint_id

),

new_mi_and_endpoint_pairs AS (

 SELECT managed_identity_id,

 target_endpoint_id

 FROM token_request_history

 WHERE -- the pair should be new

 first_seen > CURRENT_DATE

 -- we want to avoid a new managed identity

 AND managed_identity_id IN (

 SELECT managed_identity_id

 FROM token_request_history

 WHERE first_seen < CURRENT_DATE - INTERVAL '30 days'

)

)

SELECT MIN(event_time) AS first_seen,

 MAX(event_time) AS last_seen,

 category,

 properties:servicePrincipalId::string AS managed_identity_id,

 properties:servicePrincipalName::string AS managed_identity_name,

 caller_ip_address,

 properties_user_principal_name,

 properties_is_interactive,

 properties_resource_display_name::string AS target_endpoint_name,

 properties_resource_id::string AS target_endpoint_id,

 properties_risk_state,

 properties_risk_level_during_signin,

 result_type,

 COUNT(*) AS number_of_requests

FROM RAW.AZURE_SIGNIN AS azure_signin

WHERE azure_signin.category = 'ManagedIdentitySignInLogs'

 -- the hunting is running on the current day

 AND azure_signin.event_time > CURRENT_DATE

 -- filter on the new mi-endpoint pairs

 AND EXISTS (

 SELECT 1

 FROM new_mi_and_endpoint_pairs AS new_mi_and_endpoint_pairs

 WHERE new_mi_and_endpoint_pairs.managed_identity_id = azure_signin.properties:servicePrincipalId::string

 AND new_mi_and_endpoint_pairs.target_endpoint_id = azure_signin.properties_resource_id::string

)

GROUP BY category,

 managed_identity_name,

​
21

 managed_identity_id,

 target_endpoint_name,

 target_endpoint_id,

 caller_ip_address,

 properties_user_principal_name,

 properties_is_interactive,

 properties_risk_state,

 properties_risk_level_during_signin,

 result_type

Hunting Query 5 - Unique Token Identifier Usage From Multiple IP
Addresses:

Thesis

In this threat-hunting thesis, we look for classic token theft based on the Unique Token
Identifier values available in some Azure log sources. In this case, we specifically focused
on the Azure activity log source that includes the Unique Token Identifier value in the
(IDENTITY_CLAIMS:uti) to look for instances in which activities were conducted from
two different IP addresses using the same access token - this, of course, can indicate a
JWT access token theft. A JWT access token can be used from practically everywhere,
including non-Azure resources, after its theft.

Data source(s)

●​ Azure Activity

Fidelity level
●​ High

​
22

SQL

Tuning & Observations

Hunting Query Notes:

●​ In case you find this query noisy in your environment (which is unlikely, but
possible), you can try to clean out some more likely to be automation-related
operations, by adding the following condition to the hunting query below: AND
NOT OPERATION_NAME ILIKE ANY ('%DEPLOYMENTSTACKS%',
'%WORKFLOWS%', '%RESTOREPOINTS%', '%MICROSOFT.NETWORK%')

○​ Or any other potentially noisy actions repeatedly used by MIs in your
environment.

Query

●​ This is a relatively simple ‘Group By’ hunting query that looks for cases in which
the initiated activity was conducted by a service principal of type MI.

●​ The MI type was identified by evaluating the content of the “xms_mirid” field,
which wouldn’t exist in the case of a regular service principal and will be populated
with an identifier in the case of activity conducted by a MI.

●​ The Group By is being conducted using the unique token identifier, identifiers of
the specific MI, and its type. The results include only cases in which multiple IP
addresses were found as source IPs of the activity (NUMBER_OF_SOURCE_IPS >
1).​

SELECT MIN(event_time) AS min_event_time,

 MAX(event_time) AS max_event_time,

 identity_claims:uti AS unique_token_id,

 ARRAY_AGG(DISTINCT caller_ip_address) AS source_ip_addresses,

 ARRAY_AGG(DISTINCT operation_name) AS operation_names,

 ARRAY_AGG(DISTINCT identity_authorization:evidence.principalType) AS principal_types,

 identity_claims:appid AS principal_app_id,

 ARRAY_AGG(DISTINCT identity_claims:aud) AS token_audience,

 ARRAY_AGG(DISTINCT identity_authorization:evidence.role) AS role_type,

 ARRAY_AGG(DISTINCT identity_authorization:evidence.roleAssignmentScope) AS role_assignment_scope,

 ARRAY_AGG(DISTINCT resource_id) AS target_resource_id,

 ARRAY_AGG(DISTINCT identity_claims:xms_az_rid) AS managed_identity_resource_id,

 --- available only for UAMI

 identity_claims:xms_mirid AS managed_identity_name,

 --- if UAMI, it includes userAssignedIdentities. Otherwise it's SAMI

 CASE

​
23

 WHEN managed_identity_name ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 ARRAY_AGG(DISTINCT result_type) AS result_types,

 ARRAY_SIZE(source_ip_addresses) AS number_of_source_ips,

 COUNT(*) AS numbmer_of_activities

FROM RAW.AZURE_ACTIVITY

-- UAMI example

WHERE event_time BETWEEN '2025-01-01' AND '2025-03-01'

 AND identity_authorization:evidence.principalType = 'ServicePrincipal'

 AND identity_claims:xms_mirid IS NOT NULL

GROUP BY unique_token_id,

 principal_app_id,

 managed_identity_name,

 managed_identity_type

HAVING number_of_source_ips > 1

Hunting Query 6 - MI’s mass token types requested:

Thesis

From an attacker’s perspective, gaining access to an MI access token unlocks a wide
range of opportunities. MIs can be exploited across various Azure services that support
them, and a stolen token may grant access to different types of resources (as we covered
in part 1 of this research), including:​

●​ Azure Resource Manager (ARM) APIs – Potential full control over Azure resources.
●​ Storage accounts – Access to sensitive data stored in Azure Blob or File storage.
●​ Key Vaults – Ability to retrieve secrets, certificates, or encryption keys.
●​ Microsoft Graph – A vector for attacks within Entra ID and the broader Microsoft

365 ecosystem.
​
When a threat actor gains access to a resource with an attached MI, they will likely
attempt to enumerate its assigned permissions. In many cases, this involves requesting
various token types, decoding them to analyze their scope, or directly using them to
conduct unauthorized activities.

In this threat hunting thesis, we look for this kind of case, identifying a single MI that
requests multiple token types within a short time window. Such behavior may indicate a
compromised MI, with an attacker probing its potential permissions by requesting
different tokens to determine what actions they can execute.​
​

​
24

Note: Unlike other queries that target specific services such as Virtual Machines or Key
Vaults, this query is service-agnostic and applicable across the Azure platform.​

Data source(s)

●​ “Managed identity sign-ins” category under Azure Sign-Ins logs.

Fidelity Level

●​ Medium​

Tuning & Observations

Notes:

●​ If this threat-hunting query is found to be a little noisy in your environment, please
conduct the required adjustments:

○​ Modification of the UNIQUE_RESOURCE_TYPES threshold.
○​ Exclude specific token types used by your organization's MIs that are less

likely to be probed by a threat actor as part of the enumeration.
○​ Exclusion of specific groups of MI and requested token types. For example,

“Managed_Id_XYZ” always asks for the following four token types: ARM,
Key Vault, Azure Arc, and Azure Monitor.

False-Positive Example:

●​ A MI named "azure_resource_tracker" was identified requesting four different
token types in a short timeframe.

●​ The requested token types included Azure Resource Manager, Azure SQL, Azure
Key Vault, and Azure Storage.

●​ Even though the token types mentioned are known to be important and can cause
severe damage if compromised, we found that this MI typically requests them on a
daily basis.

●​ After investigating, it was found that this MI is used to map the organizational
Azure resources as part of an automatic activity, sending this information to a
known cost optimization application.

False-Negative Example:

​
25

SQL

There are potential blind spots for this threat hunting thesis:
●​ We will miss cases where the threat actor requested different types of tokens

slowly, not all/multiple at once.
●​ Cases in which the actor focused on a specific area, such as Azure Key Vaults,

asked for a minimal number of tokens (less than 4).
●​ The requested tokens were related to services we excluded from the hunting

query, like Azure Arc.

Query

In the hunting query below, we used:

●​ TIME_SLICE to look for events in a time window of 15 minutes.
●​ We looked specifically for sign-in events of the MI category, equivalent to MI token

requests.
●​ GROUP_BY to group the results by multiple columns, such as Service principal

name, Service principal ID, 15-minute time window, etc.
●​ While looking for cases of at least four distinct token types requested, excluding

token types less likely to be related to this kind of probing/enumeration of attached
permissions.​

SELECT DATE_TRUNC('DAY', event_time) AS day_of_events,

 TIME_SLICE(CAST(event_time AS TIMESTAMP_NTZ), 15, 'MINUTE') AS fifteen_min_interval,

 MIN(event_time) AS min_event_time,

 MAX(event_time) AS max_event_time,

 properties:servicePrincipalName AS service_principal_name,

 properties:servicePrincipalId AS service_principal_id,

 ARRAY_AGG(DISTINCT properties_resource_display_name) AS resource_display_name,

 ARRAY_SIZE(resource_display_name) AS unique_resource_types,

 ARRAY_AGG(DISTINCT properties:uniqueTokenIdentifier) AS uti,

 COUNT(*) AS number_of_tokens

FROM RAW.AZURE_SIGNIN

-- Adjust threshold based on needs

WHERE event_time BETWEEN '2024-10-01' AND '2025-01-25'

 -- Filtering out EventHubs sign-in logs

 AND properties_resource_display_name NOT IN ('Microsoft.EventHubs')

 -- Looking specifically for Managed Identity Sign-in logs

 AND category = 'ManagedIdentitySignInLogs'

 -- Excluding specific Resource types

 AND NOT properties_resource_display_name ILIKE ANY (

 '% Arc %',

 '%Azure Monitor%',

 '%ServiceBus%',

 '%GuestNotificationService%',

​
26

 '%hybridcompute%'

)

GROUP BY service_principal_name,

 service_principal_id,

 day_of_events,

 fifteen_min_interval

-- Adjust threshold in case needed, based on your organizational routine MIs usage

HAVING unique_resource_types > 3

Hunting Query 7 - Managed Identity Activities from Non-Azure IP
Addresses:

Thesis

This thesis examines potential Azure activities conducted using a stolen JWT access
token. This time, we focus on cases where the threat actor potentially stole and used the
token from a non-organizational Azure resource.

While MI activity typically originates from Azure-owned infrastructure, anomalous activity
from non-Azure IP addresses may indicate credential compromise or misuse.
Defenders can detect suspicious MI activity by filtering out known Azure and
organizational IPs, revealing potential attacker-controlled infrastructure and unauthorized
access attempts.

Data source(s)

●​ Azure Activity Logs​

Fidelity level
●​ Medium

Tuning & Observations
●​ The attacker operates from one of Azure IP Addresses (for example, from a virtual

machine that is part of the threat actor’s environment)

​
27

SQL

●​ It is important to note that the IP ranges used in the query below are relatively
broad, and are not specifically limited to the exact Azure ranges found in the
Microsoft publication . You can use the exact IP addresses/ranges if required.

●​ The hunting query below does not filter organizational IP ranges; however, it can
be conducted in case of unexpected noise.​

Query

The following hunting query follows very simple logic. We only filter for MI
activities based on the xms_mirid field in the activity logs, looking for any
activity originating from non-Azure IP addresses. The filtering excludes any IP
address not part of the Azure IP range.​

SELECT event_time AS event_time,

 identity:claims:xms_mirid AS managed_identity,

 identity_authorization:evidence:principalId AS principal_id,

 caller_ip_address AS source_ip_address,

 operation_name AS event_name,

 identity_claims:appid AS app_id,

 category AS category,

 level AS level,

 resource_id AS resource_id,

 result_type AS result_type

FROM RAW.AZURE_ACTIVITY

WHERE managed_identity IS NOT NULL

 AND event_time > CURRENT_TIMESTAMP - INTERVAL '60 days' -- Adjust to your preference

 -- Remove Azure IP Ranges

 AND NOT (caller_ip_address ILIKE ANY (

 '102.%', '103.%', '104.%', '108.%', '111.%', '128.%', '13.%', '130.%', '131.%',

 '132.%', '134.%', '135.%', '137.%', '138.%', '147.%', '150.%', '151.%', '157.%',

 '158.%', '167.%', '168.%', '172.%', '191.%', '193.%', '198.%', '199.%', '20.%',

 '202.%', '204.%', '207.%', '209.%', '213.%', '216.%', '23.%', '4.%', '40.%',

 '48.%', '50.%', '51.%', '52.%', '57.%', '64.%', '65.%', '68.%', '69.%', '70.%',

 '72.%', '74.%', '85.%', '9.%', '94.%', '0.%', '98.%'

))

​
28

https://www.microsoft.com/en-us/download/details.aspx?id=56519

Hunting Query 8 - Unusual Action Types by a Managed Identity:

Thesis

This threat-hunting thesis looks for cases in which the threat actor gained unauthorized
access to a MI JWT access token, but used it from within the targeted Azure
infrastructure. In this case, some of the IP-related hunting queries mentioned in this
research won’t be sufficient.

To detect, we create a baseline of “normal” action types conducted by the organizational
MIs, comparing the recent activities to this baseline.

This query is helpful because it is highly probable that a threat actor will deviate from the
typical actions performed by the MI.

Data source(s)

●​ Azure Activity Logs

Fidelity level
●​ Medium

Tuning & Observations

False-positive use case:

●​ This hunting query can potentially produce false positives related to MIs
associated with internal scanning, asset management, and identity management
systems that routinely conduct different actions against many organizational
resources. If this is the case for you, consider focusing on other MIs using this
query.

​
29

SQL

Query

●​ In this hunting query, we used a CTE of Standard Operations, which collects the
normally conducted operation names from the last few weeks in an array named
“OPERATION_NAMES”.

●​ Later, we use this list of operations to compare recent activities conducted by the
same MIs and identify operation names that don’t align with the baseline.

●​ We also track cases of newly seen MIs that weren’t part of the baseline to ensure
that they are not only not missed but properly categorized differently. ​

WITH standard_operations AS (

 SELECT identity_authorization:evidence.principalId AS service_principal_id,

 identity_claims:appid AS principal_app_id,

 ARRAY_AGG(DISTINCT operation_name) AS operation_names

 FROM RAW.AZURE_ACTIVITY

 WHERE event_time BETWEEN '2025-01-01 17:00:00' AND '2025-02-01 16:59:00'

 AND identity_claims:xms_mirid IS NOT NULL

 GROUP BY 1, 2

)

SELECT a.event_time AS event_time,

 a.identity_claims:uti AS unique_token_id,

 a.caller_ip_address AS source_ip_addresses,

 a.operation_name AS anomalous_operation_names,

 a.identity_authorization:evidence.principalType AS principal_types,

 a.identity_claims:appid AS principal_app_id,

 a.identity_authorization:evidence.principalId AS service_principal_id,

 a.identity_claims:aud AS token_audience,

 a.identity_authorization:evidence.role AS role_type,

 a.identity_authorization:evidence.roleAssignmentScope AS role_assignment_scope,

 a.resource_id AS target_resource_id,

 a.identity_claims:xms_az_rid AS token_requested_from_resource,

 a.identity_claims:xms_mirid AS managed_identity_name,

 a.operation_name AS anomalous_operation_name,

 CASE

 WHEN a.identity_claims:xms_mirid ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 a.result_type AS result_type,

 a.caller_ip_address AS number_of_source_ips,

 -- Flag for deviations: If operation is NOT in the baseline, mark as Anomaly

 CASE

 WHEN s.principal_app_id IS NULL THEN 'Newly Seen MI (Not In baseline)'

 WHEN s.principal_app_id IS NOT NULL

 AND ARRAYS_OVERLAP(ARRAY_CONSTRUCT(a.operation_name), s.operation_names) = FALSE

 THEN 'Anomalous'

​
30

 ELSE 'Normal'

 END AS anomaly_flag

FROM RAW.AZURE_ACTIVITY AS a

LEFT JOIN standard_operations AS s

 ON a.identity_authorization:evidence.principalId = s.service_principal_id

WHERE a.event_time BETWEEN '2025-02-02 17:00:00' AND '2025-04-01 19:30:00'

 AND a.identity_authorization:evidence.principalType = 'ServicePrincipal'

 AND a.identity_claims:xms_mirid IS NOT NULL

 AND anomaly_flag = 'Anomalous'

Hunting Query 9 - Attached UAMI used from a New Azure Resource:

Thesis

Threat actors who have gained unauthorized access to a resource group with a
user-assigned MI can exploit it by attaching this UAMI to an Azure resource for privilege
escalation.

For example, a compromised Entra ID user account that has the Contributor RBAC role
targeting the “AXON-MGMT-RG” attached to it. The “AXON–MGMT-RG” has a different
type of resource in it, among them a UAMI named “MGMT-UAMI”.

This UAMI has different permissions attached to it, including the “Contributor” role
targeting “AXON-PROD-RG”, “AXON-DEV-RG”, etc.

The threat actor, who gained access to a user with high privileges on the
“AXON-MGMT-RG”, doesn’t have much to do now, besides attaching this UAMI to any
resource, e.g. a VM that exists in the “AXON-MGMT-RG”, accessing this VM and
escalating his privileges, requesting an ARM token “on behalf” of this UAMI. ​
​
With this hunting query, we aim to identify the above scenario. In addition to looking at the
UAMI's actual attachment to a new resource, we look specifically for UAMI access tokens
created on unusual resources— resources from which they don’t originally operate. We
use the xms_az_rid and xms_mirid fields in the Azure Activity logs to do that.

●​ xms_mirid represents the MI resource ID, which indicates that a MI was involved
in this activity and provides the exact MI resource identifier.

●​ xms_az_rid - This field indicates the actual Azure resource from which the token
request originated. This is super useful for UAMI detection/investigation because

​
31

in the case of UAMI (in contrast to SAMI), the xms_mirid doesn’t provide this
information, only the actual name of the MI.

Data source(s)

●​ Azure Activity Logs​

Fidelity level
●​ Medium

​
Tuning & Observations

●​ This query is considered Medium-fidelity; however, it should be easily adjustable
to remove most noisy results.

○​ An example of a false positive is a case in which dynamic MI resources are
used for scanning/mapping the network, which are commonly used by
known cloud products. Excluding those service principals/MIs that initiated
the known activity types can be a relatively easy and useful step for a
threat-hunting/detection implementation.

Query

This hunting query is composed of multiple parts, detailed as follows:

●​ CTE that includes the standard operations conducted by each MI over the months
before the hunting timeframe. This is done using a Group-by logic, grouping by MI
identifiers while aggregating the operation names and “xms_az_rid” fields to build
lists of the origin resources and the activities each MI conducts.

●​ The main part of the query joins the Azure activity table with the CTE, looking for
activities originated by UAMI, where the ANOMALY_FLAG column is set to
“Anomalous”.

○​ This column is set to “Anomalous” only for cases in which the results of
ARRAY_OVERLAP results are “False”, which means that any of the array
items of “xms_az_rid” field of the main logs lookup, weren’t included in the
array items of “xms_az_rid” field in the normal resources/activities CTE.

​
32

SQL

WITH standard_operations AS (

 SELECT MIN(event_time) AS min_event_time,

 MAX(event_time) AS max_event_time,

 identity_authorization:evidence.principalId AS service_principal_id,

 identity_claims:appid AS principal_app_id,

 ARRAY_AGG(DISTINCT identity_claims:xms_az_rid) AS token_requested_from_resource,

 ARRAY_AGG(DISTINCT operation_name) AS operation_names

 FROM RAW.AZURE_ACTIVITY

 WHERE event_time BETWEEN '2024-11-01' AND '2025-01-01' -- learning period of 2 months

 AND identity_claims:xms_mirid IS NOT NULL

 AND identity_claims:xms_mirid ILIKE '%userAssignedIdentities%'

 AND identity_claims:xms_az_rid IS NOT NULL

 GROUP BY 3, 4

)

SELECT MIN(event_time) AS min_event_time,

 MAX(event_time) AS max_event_time,

 a.identity_claims:uti AS unique_token_id,

 a.caller_ip_address AS source_ip_address,

 a.operation_name AS anomalous_operation_names,

 a.identity_authorization:evidence.principalType AS principal_types,

 a.identity_claims:appid AS principal_app_id,

 a.identity_authorization:evidence.principalId AS service_principal_id,

 a.identity_claims:aud AS token_audience,

 a.identity_authorization:evidence.role AS role_type,

 a.identity_authorization:evidence.roleAssignmentScope AS role_assignment_scope,

 a.resource_id AS target_resource_id,

 COALESCE(a.identity_claims:xms_az_rid, 'New Unidentified Azure Resource')

 AS token_requested_from_resource,

 a.identity_claims:xms_mirid AS managed_identity_name,

 a.operation_name AS anomalous_operation_name,

 CASE

 WHEN a.identity_claims:xms_mirid ILIKE '%userAssignedIdentities%' THEN 'UAMI'

 ELSE 'SAMI'

 END AS managed_identity_type,

 ARRAY_AGG(DISTINCT a.result_type) AS result_type,

 -- Flag for deviations: If operation is NOT in the baseline, mark as Anomaly

 CASE

 WHEN s.principal_app_id IS NULL THEN 'Newly Seen MI (Not In baseline)'

 WHEN s.principal_app_id IS NOT NULL

 AND ARRAYS_OVERLAP(

 ARRAY_CONSTRUCT(a.identity_claims:xms_az_rid),

 s.token_requested_from_resource

) = FALSE

 THEN 'Anomalous'

 ELSE 'Normal'

 END AS anomaly_flag

FROM RAW.AZURE_ACTIVITY AS a

LEFT JOIN standard_operations AS s

 ON a.identity_authorization:evidence.principalId = s.service_principal_id

WHERE a.event_time BETWEEN '2025-01-01' AND '2025-01-08'

​
33

 AND a.identity_authorization:evidence.principalType = 'ServicePrincipal'

 AND a.identity_claims:xms_mirid IS NOT NULL

 AND a.identity_claims:xms_mirid ILIKE '%userAssignedIdentities%'

 AND anomaly_flag = 'Anomalous'

GROUP BY unique_token_id,

 source_ip_address,

 anomalous_operation_names,

 a.identity_claims:appid,

 a.identity_authorization:evidence.principalId,

 a.identity_claims:xms_az_rid,

 token_audience,

 role_type,

 role_assignment_scope,

 target_resource_id,

 token_requested_from_resource,

 managed_identity_name,

 anomalous_operation_name,

 managed_identity_type,

 anomaly_flag,

 principal_types

Hunting Query 10 - MI performs activity on Entra ID:

Thesis
MI should typically access Azure resources and shouldn’t normally make changes in Entra
ID (for example, assign roles, add credentials to app, etc.). Broad read activity on Entra ID,
e.g., listing all users in the directory initiated by SAMI, is also unusual, and we might like to
detect it as well. This is a specific use case of the scenario “MI accesses unusual
resources“.

​
Data source(s)

●​ Azure Audit
●​ Managed Identities Inventory​

Fidelity level

●​ Medium​

​
34

SQL

Tuning & Observations

●​ Hunting Query Notes:
○​ This hunting query can be useful for organizations where MIs are not

commonly used for Entra ID-related activities, like application management
and Entra ID privileges management.

■​ For organizations in which these kinds of actions are actually normal,
this query can be used as a template to build additional logic, such
as filtering out specific operation names that are normally conducted
by organizational MIs.

●​ False Positive use cases:
○​ Depending on the organization, it’s possible to see MIs that operate on Entra

ID. For example, a UAMI associated with an application that automatically
configures permissions on Entra ID.

●​ False Negative use cases:
○​ If the compromised MI was originally intended to operate on Entra ID, there

is a risk that the SOC analysts would consider that activity benign even
when the MI is compromised.

Query

This is a straightforward query that looks for any operation logged in the Azure
Audit logs, and was conducted by a MI.

○​ We use the managed_identities_inventory table we’ve created earlier
in this document to identify MIs.

SELECT azure_audit.event_time,

 azure_audit.operation_name,

 azure_audit.properties_category,

 azure_audit.caller_ip_address,

 azure_audit.properties_activity_display_name,

 azure_audit.properties_additional_details[0]:value::string AS user_agent,

 azure_audit.properties_initiated_by:app:displayName::string AS initiating_app_display_name,

 azure_audit.properties_initiated_by:app:servicePrincipalId AS initiating_service_principal_id,

 managed_identities_inventory.managed_identity_type AS managed_identity_type,

 azure_audit.properties_result,

 azure_audit.properties_target_resources

FROM RAW.AZURE_AUDIT AS azure_audit

JOIN INVESTIGATION.MANAGED_IDENTITIES_INVENTORY AS managed_identities_inventory

 ON initiating_service_principal_id = managed_identities_inventory.managed_identity_id

WHERE LOWER(properties_result) = 'success'

 AND azure_audit.event_time > CURRENT_TIMESTAMP - INTERVAL '60 days'

​
35

Hunting Query 11 - SAMI activity from abnormal IP:

Thesis

Since MIs rely on access tokens rather than static credentials, a compromised token
could allow an adversary to authenticate and access cloud resources under the guise of a
legitimate identity. An attacker could operate from their Azure instance, making the
source IP appear legitimate within Microsoft's infrastructure. This significantly
complicates traditional network-based detection mechanisms, as security teams may rely
on Azure IP ranges as inherently trusted.​
​
This thesis investigates suspicious MI activity by detecting potential token compromise
and unauthorized usage within Azure environments. The research focuses on identifying
cases where an MI token is used from an unexpected IP address, specifically cases
where the token was used from multiple IP addresses in a short timeframe, using the LAG
Snowflake function.​
​
It should be useful for the detection of token replay, lateral movement within short
timeframes, etc.​

Data source(s)

●​ Azure Activity logs​

Fidelity level

●​ Low​

Tuning & Observations

●​ It is possible to increase the time_diff_minutes < 10 to a larger time
difference, or even avoid this restriction, to reduce the chance of potentially
missing relevant findings. Tuning it based on your environment is recommended.

●​ In addition, in case of some automation activities that might lead to false-positives,
you can consider adding Resource_ID exclusions, like for example: AND
RESOURCE_ID NOT ILIKE '%ORCA%'

​
36

SQL

False Negative use cases:

●​ The attacker operates from a UAMI MI
●​ The stolen token was used long after, which doesn’t align with the time difference

restriction we use in the main part of the query

Query

●​ In this query, we used a CTE that tracks organizational SAMIs' activities using the
LAG function to collect additional information about previous activities conducted
by the same SAMI with the same characteristics (for example, the same IP, the
same unique token identifier, etc.).

●​ Using the extra information from the CTE, we looked for specific cases of potential
token theft. We looked for results in which the second IP (identified by the LAG()
function) differed from the first IP. We also limited the time difference between the
first IP identification and the second IP identification to 10 minutes. ​

WITH sami_activity_with_lag AS (

 SELECT event_time,

 identity:claims."http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

AS name_identifier,

 caller_ip_address AS current_ip,

 resource_id AS current_resource_id,

 identity_claims:uti AS current_token_id,

 -- Previous event details for the same SAMI

 LAG(caller_ip_address) OVER (

 PARTITION BY identity:claims."http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

 ORDER BY event_time

) AS prev_ip,

 LAG(event_time) OVER (

 PARTITION BY identity:claims."http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

 ORDER BY event_time

) AS prev_event_time,

 LAG(resource_id) OVER (

 PARTITION BY identity:claims."http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

 ORDER BY event_time

) AS prev_resource_id,

 LAG(identity_claims:uti) OVER (

 PARTITION BY identity:claims."http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

 ORDER BY event_time

) AS prev_token_id

 FROM RAW.AZURE_ACTIVITY

 WHERE identity:claims."http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier" IN (

 SELECT DISTINCT managed_identity_id

 FROM INVESTIGATION.MANAGED_IDENTITIES_INVENTORY AS managed_identities_inventory

​
37

 WHERE managed_identities_inventory.managed_identity_type = 'SAMI' -- Ensure only SAMI

)

 AND resource_id NOT ILIKE ANY (

 '%POLICYDEPLOYMENT%',

 '%SETBYPOLICY%',

 '%DIAGNOSTICSETTINGS%'

)

 AND event_time > CURRENT_TIMESTAMP - INTERVAL '60 days'

)

SELECT name_identifier,

 prev_event_time AS first_seen_time,

 event_time AS second_seen_time,

 TIMESTAMPDIFF(MINUTE, prev_event_time, event_time) AS time_diff_minutes,

 -- IP Address Change Detection

 prev_ip AS first_ip,

 current_ip AS second_ip,

 CASE WHEN prev_ip <> current_ip THEN TRUE

 ELSE FALSE

 END AS ip_changed,

 -- Resource Tracking

 prev_resource_id AS first_resource_id,

 current_resource_id AS second_resource_id,

 prev_token_id AS first_token_id,

 current_token_id AS second_token_id,

 -- Token Reuse Check

 CASE WHEN prev_token_id = current_token_id THEN TRUE

 ELSE FALSE

 END AS token_reused

FROM sami_activity_with_lag

WHERE ip_changed

 AND time_diff_minutes < 10 -- Focus on rapid IP changes

ORDER BY name_identifier, prev_event_time

Hunting Query 12 - MI accesses unusual resources:

Thesis

This hunting logic is based on behavioral baselining of Azure MIs to detect potential
misuse or anomalous activity. It assumes that during a stable observation window (e.g.,
30–60 days in the past), MIs typically interact with a limited set of operations and
resource types within their intended scope. The query establishes a behavioral profile by
learning this normal pattern, based on combinations of identity, resource group, and
operation. Then, in a more recent timeframe (e.g., the last 30 days), it flags any activity
that deviates from this learned behavior. These deviations might include a MI accessing a

​
38

different resource group or performing unfamiliar operations, which could indicate abuse,
lateral movement, or misconfigured permissions.

Data source

●​ Azure Activity Logs

Fidelity level

●​ Low

Tuning & Observations

●​ In case of some automation activities that might lead to false-positives, you can
consider adding Resource_ID exclusions, like for example: ​
AND mird not ilike '%OrcaScannerIdentity%'

●​ If there is insufficient data (e.g., less than 2 months), the query results may be less
reliable due to the lack of a strong baseline. In such cases, it is recommended to
adjust the time intervals to ensure enough data is available to establish a
meaningful baseline.​

Query

●​ In this query, we created a CTE that includes the baseline of each MI's activities
over the last X days, including the operations they conducted against the different
resource groups.

●​ Then, for the main part of the query, we look for recent activities conducted by the
same MI while filtering out any combination that was already seen as part of the
CTE learning.

●​ It is worth mentioning that as part of this query, we use this regex
regexp_substr(act.resource_id, '^(.*)/[^/]+$', 1, 1, 'e') to
conduct the comparison against the Resource group, instead of specifically
comparing the resource to its baseline.

​

​
39

SQL

WITH cte_learning AS (

 SELECT identity_claims:appid AS app_id,

 identity_claims:xms_mirid AS mird,

 operation_name,

 REGEXP_SUBSTR(resource_id, '^(.*)/[^/]+$', 1, 1, 'e') AS base_resource_id -- in

order to get resource groups

 FROM RAW.AZURE_ACTIVITY

 WHERE event_time BETWEEN CURRENT_TIMESTAMP - INTERVAL '60 days'

 AND CURRENT_TIMESTAMP - INTERVAL '30 days' -- set time to your liking

 AND identity_claims:xms_mirid IS NOT NULL

 GROUP BY app_id,

 mird,

 base_resource_id,

 operation_name

)

SELECT identity_claims:appid AS app_id,

 identity_claims:aud AS aud,

 operation_name,

 ARRAY_AGG(DISTINCT event_time) AS time_chart,

 identity_claims:xms_mirid AS mird,

 ARRAY_AGG(DISTINCT REGEXP_SUBSTR(act.resource_id, '^(.*)/[^/]+$', 1, 1, 'e')) AS rsc_id

FROM RAW.AZURE_ACTIVITY AS act

WHERE event_time > CURRENT_TIMESTAMP - INTERVAL '30 days' -- set time to your liking

 AND identity_claims:xms_mirid IS NOT NULL

 AND NOT EXISTS (

 SELECT 1

 FROM cte_learning AS learn

 WHERE learn.app_id = act.identity_claims:appid

 AND learn.mird = act.identity_claims:xms_mirid

 AND learn.base_resource_id = REGEXP_SUBSTR(act.resource_id, '^(.*)/[^/]+$', 1, 1, 'e')

 AND learn.operation_name = act.operation_name

)

GROUP BY app_id,

 aud,

 operation_name,

 mird

​
40

Incident Investigation & Response

Now that we’ve laid out a detailed threat-hunting approach built around multiple detection
theses, guiding what comes next is equally important. This section outlines key
investigation techniques for potentially compromised MIs, offering correlation strategies,
and recommendations for using complementary log sources. The goal is to equip
defenders not only with how to detect suspicious activity but also to trace, validate, and
respond to it effectively.

Compromised Managed Identities - Investigation Guidelines

There are various “entry points” for Azure MIs investigations. You may be aware of a
specific compromised token, observe suspicious usage of a MI by an unauthorized entity,
or detect unusual behavior that suggests malicious activity occurring under the context of
an MI.

The following guidelines outline recommended investigative actions to evaluate
potentially compromised MIs. Please note that the order of the steps can differ depending
on the investigation trigger.

1. Evaluate the Characteristics and Permissions of the MI

●​ Is the identity a SAMI or a UAMI?
●​ Assess the types of permissions granted to the MI to understand its potential blast

radius.
●​ Take into account:

○​ Azure RBAC roles
○​ Entra ID (Azure AD) roles
○​ API permissions (e.g., Graph API scopes like Mail.Read)

●​ Consider the scope of these permissions, for example, does the MI have
Contributor access at the subscription level, or is it limited to a specific resource
group?

​
41

2. Analyze Token Requests in Azure Sign-In Logs

●​ Use Azure Sign-In Logs to examine the resources for which access tokens were
requested.

●​ Determine if these token requests align with the typical behavior of the MI.
●​ If tokens were requested for unusual services, this may indicate suspicious

activity.
●​ In confirmed compromise cases, these token request logs are valuable for incident

scoping.​

3. Identify Activities Conducted with the Tokens

●​ Investigate what actions were performed using the tokens.
●​ Correlate token requests to activities across log sources depending on token type:

○​ ARM token → Azure Activity Logs.
○​ Graph tokens → Azure Audit Logs, Microsoft 365 Audit Logs, Microsoft

Graph Activity Logs.
○​ Service-specific tokens → Key Vault, Storage Account logs, etc.

●​ If available, use the unique token identifier
(properties:uniqueTokenIdentifier) to correlate token requests with activity
logs, allowing for more precise investigation.​

4. Identify the Potential Attack Path

Focus on how the MI may have been compromised:

●​ Which users (Entra ID or local resource users) authenticated to the resource
hosting to which the MI was attached?

●​ Are there access attempts from unusual IP addresses?
●​ Did any unusual operations occur on the resource to which the MI is attached

before the suspicious MI activity?​

5. Investigate Log Sources of Interest

As you examine logs, consider the following investigative questions:

●​ What IP addresses were involved?
○​ Are they internal?
○​ Are they from known Azure service IPs?

●​ Do the activities align with expected MI behavior?

​
42

○​ Example: If an MI usually deploys VMs but was used to read blob storage or
reset VM passwords, this may indicate misuse.

●​ What is the impact of the observed activity?
○​ Example: If the MI was used to reset VM credentials using

enablevmaccess, this suggests lateral movement.
●​ Was the MI attached to other resources?
●​ Is there evidence of further propagation within Azure or hybrid environments?
●​ Keep in mind that there are additional complementary log sources (not the “main”

ones) that can be super useful for different scenarios. (more details in the
“Complementary Log Sources” section below).

6. Leverage Previous Hunting Queries for Scoping

Queries presented in the threat hunting section are also highly useful for investigation.

For example, if the investigation begins with the understanding that an attacker
compromised multiple Entra ID accounts and one had access to a resource group with a
high-privilege UAMI, use anomaly-based hunting queries to check whether that MI was
misused for privilege escalation or lateral movement. Filter for the specific UAMI and
compare its recent behavior to its historical baseline.

7. Expand the Investigation Scope

Once initial findings are confirmed:

●​ Identify indicators of compromise (IOCs).
●​ Investigate any suspicious activity on:

○​ Entra ID objects (user creation, role changes, etc.)
○​ Service Principals & Enterprise Apps
○​ Microsoft 365 infrastructure

●​ Use established methodologies to trace the attacker’s path across systems and
services.​

If you're unfamiliar with Azure log sources or need additional guidance, refer to our
Human-Friendly Guide: Incident Response & Threat Hunting in Microsoft Azure.

Up Next: To support your investigation further, the following section introduces
correlation techniques that tie together different data sources for a more holistic view.

​
43

https://www.hunters.security/en/blog/human-friendly-guide-incident-response-microsoft-and-threat-hunting-azure-1

Cross Microsoft Data Sources Correlations

As mentioned above, one of the most important aspects of investigating a compromised
MI (and not only for this case) is properly correlating the different Microsoft log sources to
keep the investigation efforts focused and efficient.

The four main log sources—Azure Activity logs, Azure Audit logs, Azure Sign-in logs,
Graph activity logs, and M365 Audit logs—can all be relevant to MI investigations,
depending on the permissions and privileges granted to the MI of interest.

Some of the log sources mentioned above can be easily correlated. The correlation can
be conducted based on the Unique Token Identifier value available in some of the log
sources.

The Azure Sign-in logs provide details about the relevant resource type for which the
sign-in was conducted. For example, a sign-in conducted to an Azure Key Vault resource
type can be correlated to a specific token created as part of this sign-in event. This token
will provide access to this specific resource type, which is included in the “aud” field of
the JWT access token.

This token has a unique identifier value that represents it, and can be used to correlate
the specific token to the actions conducted using it over some of the different data
sources.

In other cases, where the unique token identifier doesn’t exist in the log source, we can
use “classic” correlation methods, looking for actions that were conducted in approximate
time to the token creation, source IP-based correlations, etc.

​
44

SQL

The table below summarizes the Unique Token Identifier and the availability of accurate
source IPs in the different log sources, to facilitate this kind of correlation:

Log Source Unique Token Identifier IP Address Comments

Azure Sign-in PROPERTIES:uniqueTokenIdentifier

No No source IP for MI
Sign-ins

Azure Audit N/A Partial IP address may reflect
Azure service IPs rather
than the original client IP

Azure Activity IDENTITY_CLAIMS:uti Yes

Graph Activity PROPERTIES:signInActivityId Yes

M365 Audit RECORD_SPECIFIC_DETAILS:app_
access_context.unique_token_id

Partial IP addresses tend to reflect
Azure service IPs rather
than the original client IP

Here is an example of an investigation query that can be used to correlate Sign-in (Token
request) to the relevant Azure Activity entries related to it, for a specific MI:

SELECT

 -- Sign-in Information

 azure_signin.event_time AS signin_event_time,

 azure_signin.properties:servicePrincipalName AS service_principal_name,

 azure_signin.properties:servicePrincipalId AS service_principal_id,

 azure_signin.properties_resource_display_name AS resource_display_name,

 azure_signin.properties:uniqueTokenIdentifier AS uti,

 azure_signin.tenant_id AS tenant_id,

 -- Azure Activities Details

 azure_activity.identity_claims:uti AS activity_uti,

 azure_activity.identity_claims:appid AS app_id,

 azure_activity.identity_claims:aud AS aud,

 azure_activity.identity_claims:groups AS groups,

 azure_activity.identity_authorization:evidence.principalId AS principal_id,

 azure_activity.identity_authorization:evidence.role AS role,

 azure_activity.caller_ip_address AS activity_caller_ip_address,

 azure_activity.operation_name AS operation_name,

 azure_activity.resource_id AS resource_id,

 azure_activity.result_signature AS result_signature,

​
45

 azure_activity.result_type AS result_type

FROM RAW.AZURE_SIGNIN AS azure_signin

JOIN RAW.AZURE_ACTIVITY AS azure_activity

 ON azure_signin.properties:uniqueTokenIdentifier = azure_activity.identity_claims:uti

 -- Adjust timeframe based on incident's time

 AND azure_signin.event_time BETWEEN '2024-12-08 16:00:00' AND '2024-12-08 22:10:00'

 -- Make sure to add some extra time in the activity event time, to detect related activities.

 AND azure_activity.event_time BETWEEN '2024-12-08 16:00:00' AND '2024-12-10 22:10:00'

 AND azure_signin.category = 'ManagedIdentitySignInLogs'

 AND service_principal_id = '<INSERT_SERVICE_PRINCIPAL_ID_OF_MI>'

 -- In case of specific token of interest, insert the Unique Token Identifier value below

 -- AND uti = '<INSERT_UNIQUE_TOKEN_IDENTIFIER_OF_INTEREST>'

Complementary Log Sources

Additional log sources, in addition to the main log sources mentioned in the table above,
should be considered when investigating different cases of compromised MIs.

Some log sources will be irrelevant for some investigations, while others can be crucial
for other incidents. Those log sources can be referred to as complementary
service-specific log sources.

Here are a few practical examples:

Azure Key Vault logs

For cases where the affected MI had privileges to sensitive resources like Key Vaults,
checking which secrets the MI accessed can be crucial for scoping the investigation,
analyzing the potential damage, conducting the necessary eradication and containment
steps, etc.

The Azure Key Vault logs have two important fields that can be useful for this kind of
case:

1.​ Identity.claim.xms_mirid - represents the MI resource ID (for SAMIs)
2.​ identity.claim.xms_az_rid - Azure resource from which the token request

was requested (for UAMIs)

Here is a simple investigation query that can be used to look for the Key Vault actions that
were conducted by a specific MI:

​
46

SQL

SELECT event_time,

 caller_ip_address,

 raw:identity.claim.appid AS application_id,

 raw:identity.claim.oid AS application_object_id,

 raw:identity.claim.xms_mirid AS managed_identity_id,

 raw:identity.claim.xms_az_rid AS managed_identity_token_source,

 raw:identity.claim.xms_az_nwperimid AS xms_az_nwperimid,

 operation_name,

 operation_version,

 properties:clientInfo AS user_agent,

 properties:httpStatusCode AS status_code,

 resource_id AS key_vault_name,

 properties:isAddressAuthorized AS is_address_authorized,

 properties:isRbacAuthorized AS is_rbac_authorized,

 raw:resultType AS result_type

FROM RAW.AZURE_KEY_VAULT_LOGS

WHERE event_time BETWEEN '2025-04-05' AND '2025-04-06'

 -- here we filter on specific common operations related to Key Vault,

 -- but there are other operations that could be relevant as well

 AND operation_name IN ('SecretGet', 'SecretList')

 AND application_object_id = '<INSERT_MI_APPLICATION_OBJECT_ID>'

ORDER BY event_time ASC

Note: In the query above, we searched for activities related to a specific MI using the
application object ID. However, you can also look for it using other attributes, including the
application ID and both xms_mirid and xms_az_rid mentioned above.

​
47

Shell

Azure Storage logs

A storage account is, of course, another type of resource that a compromised MI can
access. For this resource type, looking for activities conducted by a specific MI is also
possible. To demonstrate this, in contrast to the Snowflake SQL queries we used
throughout this entire research doc, we will demonstrate the usage of KQL and log
analytics (this is for you - KQL fans):

StorageBlobLogs​
| where OperationName == "GetBlob"​
| where TimeGenerated between (datetime(2025-04-06T15:50:00Z) ..
datetime(2025-04-06T17:40:00Z))​
| where RequesterObjectId == "<INSERT_OBJECT_ID_OF_MI_SERVICE_PRINCIPAL>"​
| project TimeGenerated, Type, Category, AccountName, OperationName, Uri, CallerIpAddress,
AuthenticationHash, RequesterObjectId, RequesterAppId, RequesterTenantId,
RequesterAudience, UserAgentHeader, ObjectKey

In the query above, we look specifically at the “GetBlob” operation name for the example;
however, any operation conducted by the MI of interest can be relevant.

Note: interestingly, as part of our simulations, the access attempts originated from other
Azure resources using the MI (for example, a VM to which the MI was attached), were
logged with a local IP address in the storage account logs. While similar GetBlob activities
by the MI identity from non-Azure resources were logged with an external IP. It might be
an interesting logic for detection/hunting as well. Still, it requires further validation, and
potentially other services or different types of networking configurations in different
Azure subscriptions can lead to false positives.

Some services have dedicated logs, or what we treat as potential forensics artifacts, that
can be useful for MI-related investigations. Below, you can find three examples of this
kind of service. Keep in mind that in the case of these services (and others), the
investigation can be focused on what happened as a result of the compromised MI usage
and the services that were compromised to gain access to the MI of interest.​
For example, a compromised MI could have led to unauthorized access to an Azure
Function App as part of a lateral movement. However, it can also be the other way around,
in the case that a threat actor gained unauthorized access to a function app with an
attached MI, stole a JWT access token from it, and used the MI to continue with the
attack.

Here are a few examples of the service-specific log sources related to this kind of
service:

​
48

Azure Function Apps

Several Azure activity log entry types can be found in cases of updated function apps,
including:

-​ Update Website
-​ Update Web Apps Functions
-​ Write <script_name> (for example Write Run.ps1)

All of the above may provide indications for interaction with the relevant function app,
which, in the context of MI investigations, can be related to a prior edit of the app to, for
example, extract JWT access tokens of a MI attached to the function app. (You can read
more about it in this blog by SpecterOps.)

Besides those Azure activity logs, that are part of the “main” log sources we already
discussed, there are additional data sources that can be used to gather additional
forensics artifacts:

1.​ Function Apps Invocation Logs—This log source provides up to 20 of the most
recent function invocation traces. It can be useful to get information about
execution times and the reasons for execution (for example, programmatically
called via the host APIs).

2.​ Application Insights - provides extended monitoring capabilities to the created
function app. It can be very useful to get additional information about the function
app usage, also in visualized graphs that can assist in identifying anomalies, but
also to get verbose request details, including the targeted URL, request type, etc.
using Transaction search.

​
49

https://posts.specterops.io/managed-identity-attack-paths-part-3-function-apps-300065251cbe

​
Figure 3 - Function apps - Invocations logs

This kind of extra visibility can be very important for investigations that require further
details or cases in which the main log sources were unavailable or insufficient.

Azure Automation Accounts

The dedicated logs of Azure Automation Accounts have even more potential to play the
role of crucial forensics artifacts in incident investigations. Besides the classic Azure
activity logs related to those, like:

-​ Write an Azure Automation runbook draft
-​ Create or update an Azure Automation runbook
-​ Publish an Azure Automation runbook draft
-​ Etc.

However, while the logs above are important, they provide partial information and lack
crucial details like the actual content that was written and/or published in the relevant
automation account.

1.​ View last test - provides the option to look at the output of the last tested runbook
execution. Can be very useful, in case the last execution was conducted by a

​
50

threat actor. Think of a case in which a JWT token was requested, it can be nice to
find the actual token used by the attacker.

2.​ Job History—This section under the automation account’s runbook of interest
includes a list of past jobs and their status. By clicking on each, you should be able
to see its output as well. As mentioned in the “view last test” option above, it can
be very useful to get the actual output a threat actor saw while abusing the
automation account.

Figure 4 - Automation accounts job history

Azure Deployment Scripts

Azure Deployment Scripts are a first‑class ARM resource that enables to run PowerShell
or Bash scripts as part of an infrastructure deployment, without needing a separate VM or
pipeline. They automatically provision a temporary container or sandbox, execute your
script (e.g., to bootstrap resources or configure settings) and capture output/logs.

Azure Deployment Scripts can be abused for extracting JWT access tokens. It can be
done in case the threat actor creates a new Deployment Script or modifies an existing
one, and asks for an access token explicitly.

Azure Activity Logs provide some visibility into Deployment Scripts actions by operations
like:

-​ MICROSOFT.RESOURCES/DEPLOYMENTS/WRITE
-​ MICROSOFT.RESOURCES/DEPLOYMENTS/VALIDATE/ACTION

Yet, that visibility is limited and might be insufficient for a root cause analysis as part of an
IR investigation.

​
51

Besides those logs, there is additional information that might be considered as forensic
artifacts to some extent. That information is available under the Azure Portal ->
Deployment Scripts management page.

Figure 5 - Deployment Scripts management page under Azure Portal

For each script, we can find general details on it:

Figure 6 - Deployment Script details

In addition, the content of the script might be available as well. In the following example,
we see that the command Get-AzAccessToken was executed from within the Deployment
Script.

​
52

Figure 7 - Deployment Script content

​
53

Summary

This part of the research series explored key aspects of threat hunting and incident
investigation in compromised Azure MIs cases. We examined methods for identifying and
inventorying MIs across the environment. We introduced a collection of hunting queries
designed to detect various suspicious behaviors and misuse patterns, and provided
investigation guidelines tailored for MI abuse.

These guidelines leveraged primary Microsoft/Azure log sources and complementary
telemetry to help analysts uncover activity context, map potential blast radius, and trace
lateral movement paths. Together, these tools and techniques support a more effective
and holistic defense strategy against identity-based threats in Azure, especially those
involving Non-Human Identities (NHIs), which remain a critical and often overlooked part
of the attack surface.

We hope this research sparked new ideas and offered practical tools defenders can use
right away. It's our small contribution to helping the community stay one step ahead of
identity-based threats in the cloud.

​
54

Hunters is transforming security operations with AI-powered automation, making it
especially impactful for small SOC teams that need to maximize efficiency without large
security budgets. As a leading next-gen SIEM, the Hunters SOC Platform is designed to
go beyond traditional SIEM limitations by integrating Agentic AI, Copilot AI, machine
learning, and graph-based correlation to automate detection, investigation, and response.
Trusted by leading organizations such as Cimpress, OpenLane, and The RealReal.

Team Axon is an elite cybersecurity research team at Hunters, composed of seasoned
professionals with deep expertise across various cybersecurity domains, including
Incident Response, Digital Forensics, Red Teaming, Cloud Research, Detection
Engineering, and Threat Research.

Notable research and contributions from Team Axon include the discovery of significant
cybersecurity threats such as:

●​ DeleFriend: Discovery of a design flaw in Google Cloud Platform's domain-wide
delegation potentially exposing Google Workspace to compromise.

●​ VEILDrive: Identification and analysis of threat campaigns leveraging Microsoft
services and novel malware.

●​ Malicious Chrome Extensions Campaign: Early exposure of an active attack,
providing timely indicators of compromise (IOCs) and technical details to the
broader community.

Together, Hunters and Team Axon equip organizations with advanced capabilities to
detect, investigate, and respond swiftly to emerging cyber threats.

To find out how Hunters can help your small SOC team, reach out to us here.

​
55

https://hubs.li/Q03dBbpj0
https://hubs.li/Q03dBbLk0
https://hubs.li/Q03dBbVj0
https://hubs.li/Q03hzDXv0

	Introduction
	Identifying Azure Managed Identities
	Review Azure Portal
	Query Azure Resources
	Examine Azure Logs
	​MI authentication events under Azure Sign-Ins logs
	MI creation events under Azure Audit logs
	
	MI creation events under Azure Activity logs

	
	Threat Hunting Managed Identity Abuse
	Hunting Queries: At a glance
	Hunting Query 1 - Explicit request for IMDS from a VM with SAMI:
	Thesis
	Data source(s)
	
	Fidelity level
	Tuning & Observations
	Query

	Hunting Query 2 - Microsoft Graph Enumeration using Managed Identity:
	Thesis
	Data source(s)
	
	Fidelity level
	Tuning & Observations
	Query

	
	Hunting Query 3 - Sensitive Graph Roles-usage by a Managed Identity
	Thesis
	Data source(s)
	Fidelity level
	Tuning & Observations
	Query

	
	Hunting Query 4 - MI’s token request for unusual endpoints:
	Thesis
	Data source(s)
	Fidelity level
	Tuning & Observations
	Query

	
	Hunting Query 5 - Unique Token Identifier Usage From Multiple IP Addresses:
	Thesis
	
	Data source(s)
	
	Fidelity level
	
	Tuning & Observations
	Query

	Hunting Query 6 - MI’s mass token types requested:
	Thesis
	From an attacker’s perspective, gaining access to an MI access token unlocks a wide range of opportunities. MIs can be exploited across various Azure services that support them, and a stolen token may grant access to different types of resources (as we covered in part 1 of this research), including:​
	Data source(s)
	Fidelity Level
	Tuning & Observations
	Query

	Hunting Query 7 - Managed Identity Activities from Non-Azure IP Addresses:
	Thesis
	Data source(s)
	Fidelity level
	
	Tuning & Observations
	Query

	
	Hunting Query 8 - Unusual Action Types by a Managed Identity:
	Thesis
	Data source(s)
	
	Fidelity level
	
	Tuning & Observations
	Query

	Hunting Query 9 - Attached UAMI used from a New Azure Resource:
	Thesis
	Data source(s)
	Fidelity level
	​Tuning & Observations
	Query

	Hunting Query 10 - MI performs activity on Entra ID:
	Thesis
	​Data source(s)
	Fidelity level
	Tuning & Observations
	Query

	Hunting Query 11 - SAMI activity from abnormal IP:
	Thesis
	Data source(s)
	●​Azure Activity logs​
	Fidelity level
	Tuning & Observations
	Query

	Hunting Query 12 - MI accesses unusual resources:
	Thesis
	Data source
	Fidelity level
	Tuning & Observations
	Query

	
	Incident Investigation & Response
	Compromised Managed Identities - Investigation Guidelines
	Cross Microsoft Data Sources Correlations
	Complementary Log Sources
	Azure Key Vault logs
	
	Azure Storage logs
	Azure Function Apps
	Azure Automation Accounts
	
	Azure Deployment Scripts

	
	Summary

